

BRUCIATORE MISTO GAS/GASOLIO MODULANTI PROGRESSIVE MODULATING MIXED GAS/DIESEL BURNER

Manuale istruzioni per l'installazione, l'uso e la manutenzione

ΙΤ

Instruction manual for installation, use and maintenance

ΕN

TBML 80 ME
TBML 120 ME
TBML 160 ME
TBML 210LX ME
TBML 310LX ME

ISTRUZIONI ORIGINALI (IT) ORIGINAL INSTRUCTIONS (IT) ((

0006160337_202106

SOMMARIO

Avvertenze per l'uso in condizioni di sicurezza	2
Caratteristiche tecniche	6
Materiale a corredo	7
Targa identificazione bruciatore	7
Dati registrazione prima accensione	7
Dimensioni di ingombro	8
Descrizione componenti	9
Quadro elettrico	9
Campo di lavoro	10
Applicazione del bruciatore alla caldaia	11
Linea di alimentazione gas	12
Schema di principio bruciatori a gas	12
Collegamenti elettrici	13
Linea di alimentazione combustibile liquido	15
Pompa ausiliaria	15
Schemi dimensionamento tubazione	17
Descrizione del funzionamento con combustibile liquido	20
Primo riempimento tubazione	22
Accensione e regolazione combustibile liquido	23
Particolari pompa	24
Descrizione del funzionamento con combustibile gassoso	25
Accensione e regolazione gas metano	27
Regolazione aria sulla testa di combustione	30
Schema di regolazione testa di combustione e distanza disco elettrodi	31
Precisazioni sull'uso del propano	32
Schema di principio per riduzione pressione G.P.L. a due stadi per bruciatore oppure caldaia	
Manutenzione	34
tempi di manutenzione	
Vita attesa	
tabella portata ugelli	39
Istruzioni per l'accertamento delle cause di irregolarità nel funzionamento e la loro eliminazione	40
Schemi elettrici	13

AVVERTENZE PER L'USO IN CONDIZIONI DI SICUREZZA

SCOPO DEL MANUALE

Il manuale si propone di contribuire all'utilizzo sicuro del prodotto a cui fa riferimento, mediante l'indicazione di quei comportamenti necessari prevedendo di evitare alterazioni delle caratteristiche di sicurezza derivanti da eventuali installazioni non corrette, usi erronei, impropri o irragionevoli.

E' esclusa qualsiasi responsabilità contrattuale ed extracontrattuale del costruttore per i danni causati da errori nell'installazione e nell'uso, e comunque da inosservanza delle istruzioni date dal costruttore stesso.

- Le macchine prodotte hanno una vita minima di 10 anni, se vengono rispettate le normali condizioni di lavoro ed effettuate le manutenzioni periodiche indicate dal fabbricante.
- · Il libretto di istruzioni costituisce parte integrante ed essenziale del prodotto e dovrà essere consegnato all'utente.
- · L'utente dovrà conservare con cura il libretto per ogni ulteriore consultazione.
- Prima di iniziare a usare l'apparecchio, leggere attentamente le "Istruzioni per l'uso" riportate nel manuale e quelle applicate direttamente sul prodotto, al fine di minimizzare i rischi ed evitare incidenti.
- · Prestare attenzione alle AVVERTENZE DI SICUREZZA, non adottare USI IMPROPRI.
- · L'installatore deve valutare i RISCHI RESIDUI che potrebbero sussistere.
- Per evidenziare alcune parti di testo o per indicare alcune specifiche di rilevante importanza, sono stati adottati alcuni simboli di cui viene descritto il significato.

PERICOLO / ATTENZIONE

Il simbolo indica situazione di grave pericolo che, se trascurate. possono mettere seriamente a rischio la salute e la sicurezza delle persone.

CAUTELA / AVVERTENZE

Il simbolo indica che è necessario adottare comportamenti adeguati per non mettere a rischio la salute e la sicurezza delle persone e non provocare danni economici.

IMPORTANTE

Il simbolo indica informazioni tecniche ed operative di particolare importanza da non trascurare.

CONDIZIONI E DURATA DELLO STOCCAGGIO

Gli apparecchi vengono spediti con l'imballaggio del costruttore e trasportati su gomma, via mare e via ferrovia in conformità con le norme per il trasporto di merci in vigore per l'effettivo mezzo di trasporto uti-

Per apparecchi non utilizzati, è necessario conservarli in locali chiusi con la dovuta circolazione d'aria a condizioni standard di temperatura -25° C e + 55° C.

Il periodo di stoccaggio è di 3 anni.

AVVERTENZE GENERALI

· Il bruciatore deve essere utilizzato in caldaie per applicazioni civili quali riscaldamento degli edifici e produzione di acqua calda sanitaria.

- Il bruciatore NON deve essere utilizzato in cicli produttivi e processi industriali, disciplinati questi ultimi dallo Standard EN 746-2
- La data di produzione dell'apparecchio (mese, anno) sono indicati sulla targa identificazione bruciatore presente sull'apparecchio.
- L'apparecchio non è adatto a essere usato da persone (bambini compresi) le cui capacità fisiche, sensoriali o mentali siano ridotte, oppure con mancanza di esperienza o di conoscenza.
- l'uso dell'apparecchio è consentito a tali persone solo nel caso in cui possano beneficiare, attraverso l'intermediazione di una persona responsabile, di informazioni relative alla loro sicurezza, di una sorveglianza, di istruzioni riguardanti l'uso dell'apparecchio.
- I bambini devono essere sorvegliati per sincerarsi che non giochino con l'apparecchio.
- Questo apparecchio dovrà essere destinato solo all'uso per il quale é stato espressamente previsto. Ogni altro uso é da considerarsi improprio e quindi pericoloso.
- L'installazione dell'apparecchio deve essere effettuata in ottemperanza alle norme vigenti, secondo le istruzioni del costruttore a da personale professionalmente qualificato.
- Per personale professionalmente qualificato si intende quello avente specifica e dimostrata competenza tecnica nel settore, in accordo con la legislazione locale vigente.
- Un'errata installazione può causare danni a persone, animali o cose, per i quali il costruttore non é responsabile.
- Dopo aver tolto ogni imballaggio assicurarsi dell'integrità del contenuto. In caso di dubbio non utilizzare l'apparecchio e rivolgersi al fornitore. Gli elementi dell'imballaggio non devono essere lasciati alla portata dei bambini in quanto potenziali fonti di pericolo.
- La maggior parte dei componenti dell'apparecchio e del suo imballo è realizzata con materiali che possono essere riutilizzati. L'imballaggio l'apparecchio ed i suoi componenti non possono essere smaltiti insieme ai normali rifiuti domestici, ma sono soggetti a smaltimento conforme alle normative vigenti.
- Prima di effettuare qualsiasi operazione di pulizia o manutenzione, disinserire l'apparecchio dalla rete di alimentazione agendo sull'interruttore dell'impianto e/o attraverso gli appositi organi di intercettazione.

- Se l'apparecchio dovesse essere venduto o trasferito ad un altro proprietario o se si dovesse traslocare e lasciare l'apparecchio, assicurarsi sempre che il libretto accompagni l'apparecchio in modo che possa essere consultato dal nuovo proprietario e/o dall'installatore.
- Con apparecchio in funzione non toccare le parti calde normalmente situate in vicinanza della fiamma e dell'eventuale sistema di preriscaldamento del combustibile. Possono rimanere calde anche dopo un arresto non prolungato dell'apparecchio.
- In caso di guasto e/o di cattivo funzionamento dell'apparecchio, disattivarlo, astenendosi da qualsiasi tentativo di riparazione o di intervento diretto. Rivolgersi esclusivamente a personale professionalmente qualificato.
- L'eventuale riparazione dei prodotti dovrà essere effettuata solamente da un centro di assistenza autorizzato da BALTUR o dal suo distributore locale, utilizzando esclusivamente ricambi originali.
- Il costruttore e/o il suo distributore locale declinano qualunque responsabilità per incidenti o danni causati da modifiche non autorizzate sul prodotto o dalla inosservanza delle prescrizioni contenute nel manuale.

AVVERTENZE DI SICUREZZA PER L'INSTALLAZIONE

- L'apparecchio deve essere installato in un locale idoneo con una adeguata ventilazione secondo le leggi e norme vigenti.
- La sezione delle griglie di aspirazione dell'aria e le aperture di aerazione del locale di installazione non devono essere ostruite o ridotte.
- Il locale di installazione NON deve presentare il rischio di esplosione e/o incendio.
- Prima dell'installazione si consiglia di effettuare una accurata pulizia interna di tutte le tubazioni dell'impianto di alimentazione del combustibile.
- Prima di collegare l'apparecchio accertarsi che i dati di targa siano corrispondenti a quelli della rete di alimentazione (elettrica, gas, gasolio o altro combustibile).
- Accertarsi che il bruciatore sia fissato saldamente al generatore di calore secondo le indicazioni del costruttore.
- Effettuare gli allacciamenti alle fonti di energia a regola d'arte come indicato negli schemi esplicativi secondo i requisiti normativi e legislativi in vigore al momento dell'installazione.
- Verificare che l'impianto di smaltimento fumi NON sia ostruito.
- Se si decide di non utilizzare, in via definitiva il bruciatore, si dovranno far effettuare da personale professionalmente qualificato le sequenti operazioni:
 - Disinserire l'alimentazione elettrica staccando il cavo di alimentazione dell'interruttore generale.
 - Chiudere l'alimentazione del combustibile attraverso la valvola manuale di intercettazione e asportare i volantini di comando dalla loro sede.
 - Rendere innocue quelle parti che potrebbero essere potenziali fonti di pericolo.

AVVERTENZE PER L'AVVIAMENTO IL COLLAUDO L'USO E LA MANUTENZIONE

- L'avviamento, il collaudo e la manutenzione devono essere effettuati esclusivamente da personale professionalmente qualificato, in ottemperanza alle disposizioni vigenti.
- Fissato il bruciatore al generatore di calore, accertarsi durante il collaudo che la fiamma generata non fuoriesca da eventuali fessure.
- Controllare la tenuta dei tubi di alimentazione del combustibile all'apparecchio.
- · Verificare che la portata del combustibile coincida con la potenza

- richiesta al bruciatore.
- Tarare la portata di combustibile del bruciatore secondo la potenza richiesta dal generatore di calore.
- La pressione di alimentazione del combustibile deve essere compresa nei valori riportati nella targhetta presente sul bruciatore e/o sul manuale
- L'impianto di alimentazione del combustibile sia dimensionato per la portata necessaria al bruciatore e che sia dotato di tutti i dispositivi di sicurezza e controllo prescritti dalle norme vigenti.
- Prima di avviare il bruciatore e almeno una volta all'anno, far effettuare da personale professionalmente qualificato le seguenti operazioni:
 - Tarare la portata di combustibile del bruciatore secondo la potenza richiesta dal generatore di calore.
 - Eseguire il controllo della combustione regolando la portata d'aria comburente e/o del combustibile, per ottimizzare il rendimento di combustione e le emissioni in osservanza alla legislazione vigente.
 - Verificare la funzionalità dei dispositivi di regolazione e di sicurezza.
 - Verificare la corretta funzionalità del condotto di evacuazione dei prodotti della combustione.
 - Controllare la tenuta nel tratto interno ed esterno dei tubi di alimentazione del combustibile.
 - Controllare al termine delle regolazioni che tutti i sistemi di bloccaggio meccanico dei dispositivi di regolazione siano ben serrati.
 - Accertarsi che siano disponibili le istruzioni relative all'uso e manutenzione del bruciatore.
- In caso di ripetuti arresti in blocco del bruciatore non insistere con le procedure di riarmo manuale, ma rivolgersi a personale professionalmente qualificato.
- Allorché si decida di non utilizzare il bruciatore per un certo periodo, chiudere il rubinetto o i rubinetti di alimentazione del combustibile.

AVVERTENZE PARTICOLARI PER L'USO DEL GAS.

- Verificare che la linea di adduzione e la rampa siano conformi alle norme e prescrizioni vigenti.
- · Verificare che tutte le connessioni gas siano a tenuta.
- Non lasciare l'apparecchio inutilmente inserito quando non è utilizzato e chiudere sempre il rubinetto del gas.
- In caso di assenza prolungata dell'utente dell'apparecchio chiudere il rubinetto principale di adduzione del gas al bruciatore.
- Avvertendo odore di gas:
 - non azionare interruttori elettrici, il telefono e qualsiasi altro oggetto che possa provocare scintille;
 - aprire immediatamente porte e finestre per creare una corrente d'aria che purifichi il locale;
 - chiudere i rubinetti del gas;
 - richiedere l'intervento di personale professionalmente qualificato.
- Non ostruire le aperture di aerazione del locale dove é installato un apparecchio a gas, per evitare situazioni pericolose quali la formazione di miscele tossiche ed esplosive.

RISCHI RESIDUI

 Nonostante l'accurata progettazione del prodotto, nel rispetto delle norme cogenti e delle buone regole nell'impiego corretto possono permanere dei rischi residui. Questi vengono segnalati sul bruciatore con opportuni Pittogrammi.

ATTENZIONE

Organi meccanici in movimento.

ATTENZIONE

Materiali a temperature elevate.

ATTENZIONE

Quadro elettrico sotto tensione.

DISPOSITIVI DI PROTEZIONE INDIVIDUALE

 Durante lo svolgimento dell'attività lavorativa sul bruciatore, utilizzare i seguenti dispositivi di sicurezza.

AVVERTENZE SICUREZZA ELETTRICA

- Verificare che l'apparecchio abbia un idoneo impianto di messa a terra, eseguito secondo le vigenti norme di sicurezza.
- Far verificare da personale professionalmente qualificato che l'impianto elettrico sia adeguato alla potenza massima assorbita dall'apparecchio indicata in targa.
- Prevedere un interruttore onnipolare con distanza d'apertura dei contatti uguale o superiore a 3 mm per l'allacciamento alla rete elettrica, come previsto dalle normative di sicurezza vigenti (condizione della categoria di sovratensione III).
- Sguainare l'isolante esterno del cavo di alimentazione nella misura strettamente necessaria al collegamento, evitando così che il filo possa venire a contatto con parti metalliche.
- L'uso di un qualsiasi componente che utilizza energia elettrica comporta l'osservanza di alcune regole fondamentali quali:
 - non toccare l'apparecchio con parti del corpo bagnate o umide e/o a piedi umidi;
 - non tirare i cavi elettrici;
 - non lasciare esposto l'apparecchio ad agenti atmosferici (pioggia, sole, ecc.) a meno che non sia espressamente previsto;
 - non permettere che l'apparecchio sia usato da bambini o da

- persone inesperte;
- Il cavo di alimentazione dell'apparecchio non deve essere sostituito dall'utente. In caso di danneggiamento del cavo, spegnere l'apparecchio. Per la sua sostituzione,rivolgersi esclusivamente a personale professionalmente qualificato;
- Allorché si decida di non utilizzare l'apparecchio per un certo periodo é opportuno spegnere l'interruttore elettrico di alimentazione a tutti i componenti dell'impianto che utilizzano energia elettrica (pompe, bruciatore, ecc.).
- · Usare cavi flessibili secondo norma EN 60204-1
 - se sotto guaina di PVC almeno tipo H05VV-F;
 - se sotto guaina di gomma almeno tipo H05RR-F; LiYCY 450/750V
 - senza nessuna guaina almeno tipo FG7 o FROR, FG70H2R
- L'equipaggiamento elettrico funziona correttamente quando l'umidità relativa non supera il 50% a una temperatura massima di +40°
 C. Umidità relative superiori sono ammesse a temperature inferiori (esempio 90% a 20° C).
- L'equipaggiamento elettrico funziona correttamente ad altitudini fino a 1000 m sopra il livello del mare.

IMPORTANTE

Dichiariamo che i nostri bruciatori ad aria soffiata di combustibili gassosi, liquidi e misti, rispettano i requisiti essenziali imposti dalle Direttive e Regolamenti europei e sono conformi alle Norme europee

Una copia della dichiarazione di conformità CE è fornita a corredo con il bruciatore.

A CURA DELL'INSTALLATORE

- Installare un idoneo sezionatore per ciascuna linea di alimentazione del bruciatore.
- La disconnessione deve avvenire attraverso un dispositivo rispondente ai seguenti requisiti:
- Un interruttore di manovra sezionatore, secondo IEC 60947-3 per almeno la categoria di apparecchi AC-23 B (manovre non frequenti su carichi altamente induttivi o motori in corrente alternata).
- Un dispositivo di commutazione di controllo e protezione adatto all'isolamento secondo IEC 60947-6-2.
- Un interruttore adatto all'isolamento secondo IEC 60947-2.
- Il dispositivo di disconnessione deve rispettare tutti i seguenti requisiti:
 - Garantire l'isolamento dell'equipaggiamento elettrico dalla linea di alimentazione in posizione stabile di OFF indicata con "0", ed avere una posizione stabile di ON indicata con "1".
 - Avere uno spazio tra i contatti visibile o un indicatore di posizione che non possa indicare OFF (isolato) fino a quando tutti i contatti non siano effettivamente aperti ed i requisiti per la funzione di isolamento siano stati soddisfatti.
 - Possedere un azionamento facilmente individuabile di colore grigio o nero.
 - Essere lucchettabile in posizione di OFF. In caso di blocco, non sarà possibile l'azionamento remoto e locale.
 - Scollegare tutti i conduttori attivi del suo circuito di alimentazione.
 Per i sistemi di alimentazione TN, il conduttore neutro può essere disconnesso o meno, tranne nei paesi in cui la disconnessione del conduttore neutro (se utilizzato) è obbligatoria.
- Entrambi i comandi di sezionamento devono essere collocati ad un altezza compresa tra 0,6 m ÷ 1, 7 m rispetto al piano di lavoro.
- I sezionatori, in quanto non dispositivi di emergenza possono essere forniti di una copertura supplementare o una porta che può essere facilmente aperta senza una chiave o uno strumento. Si deve indicare chiaramente la sua funzione, ad esempio con simboli pertinenti.
- Il bruciatore può essere installato esclusivamente in sistemi TN oppure TT. Non può essere installato in sistemi isolati di tipo IT.
- Non ridurre la sezione dei conduttori. E' richiesta una corrente massima di cortocircuito al punto di connessione (prima dei dispositivi di protezione) di 10kA al fine di garantire il corretto intervento dei dispositivi di protezione.
- Per nessun motivo può essere abilitata la funzionalità di ripristino automatico (rimuovendo in modo irreversibile il relativo talloncino in plastica) sul dispositivo termico posto a protezione del motore ventola.
- Nel collegamento dei cavi ai morsetti dell'equipaggiamento elettrico
 prevedere una lunghezza maggiore del conduttore di terra in modo
 da garantire che non sia soggetto in alcun modo alla disconnessione
 accidentale in seguito alle possibili sollecitazioni meccaniche.
- Prevedere idoneo circuito di arresto di emergenza in grado di operare un arresto simultaneo in categoria 0 sia sulla linea monofase 230Vac che sulla linea Trifase 400Vac. Il sezionamento di entrambe le linee di alimentazione è in grado di garantire la transizione in condizione "sicura" nel più breve tempo possibile.
- L'arresto d'emergenza dovrà essere operato garantendo i seguenti requisiti:
 - Il dispositivo elettrico di arresto di emergenza deve soddisfare i "requisiti speciali per interruttori di comando con apertura diretta" (fare riferimento a EN 60947-5-1: 2016, Allegato K).

- Si raccomanda che il dispositivo di arresto di emergenza sia di colore rosso e la superficie dietro di esso sia di colore giallo.
- L'azione di emergenza deve essere di tipo mantenuto e richiedere un'azione manuale per essere ripristinata.
- Al ripristino del dispositivo di emergenza il bruciatore non deve essere in grado di avviarsi autonomamente, ma è richiesta un ulteriore azione di "marcia" da parte dell'operatore.
- Il dispositivo di azionamento di emergenza dovrà risultare chiaramente visibile e facilmente raggiungibile e azionabile nelle immediate vicinanze del bruciatore. Non deve essere contenuto all'interno di sistemi di protezione o dietro porte apribili con chiavi o utensili.
- Nel caso in cui il bruciatore sia posizionato in modo da non essere agevolmente raggiunto, azionato e manutenuto, prevedere un idoneo piano di servizio al fine di garantire che il quadro di comando sia posizionato tra 0.4 ÷ 2.0 metri rispetto al piano di servizio. Questo al fine di garantire un facile accesso da parte dell'operatore alle operazioni di manutenzione e regolazione.
- Nell'installazione dei cavi di alimentazione e comando in ingresso all'equipaggiamento elettrico del bruciatore, rimuovere i tappi di protezione e prevedere idonei pressacavi in grado di garantire un grado di protezione "IP" uguale o superiore a quello indicato sulla targhetta identificativa del bruciatore.

CARATTERISTICHE TECNICHE

MODELLO		TBML 80 ME	TBML 120 ME	TBML 160 ME	TBML 210 LX ME	TBML 310 LX ME
Potenza termica max metano	kW	850	1200	1600	2100	3200
Potenza termica min metano	kW	180	250	350	350	500
¹) emissioni metano	mg/kWh	Classe 3	Classe 3	Classe 3	Classe 3	Classe 3
Funzionamento metano		Modulazione	Modulazione	Modulazione	Modulazione	Modulazione
		elettronica	elettronica	elettronica	elettronica	elettronica
Portata termica max metano	Stm³/h	90	127	169,3	222,2	338,7
Portata termica min metano	Stm³/h	19	26,4	37	47,6	74,1
Pressione min metano	hPa (mbar)	28,3	18,6	39,4	57	90
Pressione max metano	hPa (mbar)	360	360	360	500	500
Potenza termica max propano	kW	850	1200	1600	2100	3200
Potenza termica min propano	kW	190	250	350	450	700
Portata termica max propano	Stm³/h	34,7	49	65,4	85,9	130,9
Portata termica min propano	Stm³/h	7,7	10,2	14,3	18,4	28,7
Pressione min propano	hPa (mbar)	41	23,1	41,8	53	100
Pressione max propano	hPa (mbar)	360	360	500	360	360
²) emissioni propano	mg/kWh	Classe 3	Classe 3	Classe 3	Classe 3	Classe 3
Portata termica max gasolio	kg/h	71,6	101,2	134,9	177	270
Portata termica min gasolio	kg/h	29,5	37,9	46,4	37.9	59
Potenza termica max gasolio	kW	850	1200	1600	2100	3200
Potenza termica min gasolio	kW	350	450	550	450	950
³) emissioni gasolio	mg/kWh	Classe 2	Classe 2	Classe 2	Classe 2	Classe 2
,		5,5 cst / 20°C -	5,5 cst / 20°C -			
Viscosita gasolio		1,5°E / 20°C	1,5°E / 20°C	1,5°E / 20°C	1,5°E / 20°C	1,5°E / 20°C
Funzionamento gasolio		Bistadio	Bistadio	Bistadio	Bistadio	Bistadio
Motore ventola 50hz	kW	1.1	1.5	3	5.5	7.5
Trasformatore accensione 50 hz		26 kV - 48 mA -	26 kV - 48 mA -			
Trasionnatore accensione 30 Hz		230 V	230 V	230 V	230 V	230 V
Dati elettrici trifase 50hz		3L - 400V - 2,5A - 1,35kW	3L - 400V - 3,1A - 1.76kW	3L - 400V - 6,3A - 3,49kW	3L - 400V - 10,2A - 6.14kW	3L - 400V - 13,7A - 8,36kW
Dati elettrici monofase 50hz		1N - 230V - 0,82A -	1N - 230V - 0,84A -	1N - 230V - 0,84A -	1N - 230V - 1,05A -	1N - 230V - 1,05A -
		0,189kW	0,193kW	0,193kW	0,241kW	0,241kW
Grado di protezione		IP40	IP40	IP40	IP40	IP40
Apparecchiatura		BT 340 / 335	BT 340 / 335			
Rilevazione fiamma		Fotocellula UV	Fotocellula UV	Fotocellula UV	Fotocellula UV	Fotocellula UV
temperatura aria ambiente di funziona- mento	°C	-15 ÷ +40	-15 ÷ +40	-15 ÷ +40	-15 ÷ +40	-15 ÷ +40
Pressione sonora**	dBA	76	78	83	81	84
Potenza sonora***	dBA	85	87	92	94	97
Peso con imballo	kg	88	97	105	125	160

Emissioni CO metano / propano ≤ 100 mg/kWh

Potere calorifico inferiore alle condizioni di riferimento 15° C, 1013 hPa (mbar):

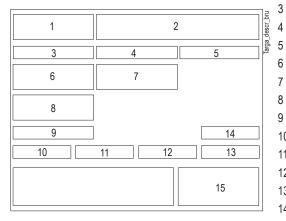
Gas metano: Hi = 9,45 kWh/Stm³ = 34,02 MJ/Stm³

Gasolio: Hi = 11,86 kWh/kg = 42,70 Mj/kg Propano: Hi = 24,44 kWh/Stm³ = 88,00 MJ/Stm³

Per tipi di gas e pressioni diverse, consultare i nostri uffici commerciali.

Pressione minima in funzione del tipo di rampa utilizzata per ottenere la portata max con pressione nulla in focolare.

^{**} La pressione sonora e stata rilevata con bruciatore funzionante alla portata termica nominale massima, alle condizioni ambientali nel laboratorio del costruttore e non è confrontabile con misure effettuate in siti diversi. Accuratezza di misura σ = +/- 1,5 dB(A).


^{***} La potenza sonora è stata ottenuta caratterizzando il laboratorio del costruttore con un sorgente campione; tale misura ha un'accuratezza di categoria 2 (engineering class) con deviazione standard pari a 1.5 dB(A).

MATERIALE A CORREDO

MODELLO	TBML 80 ME	TBML 120 ME	TBML 160 ME	TBML 210 LX ME	TBML 310 LX ME
Guarnizione flangia attacco bruciatore	1	1	1	1	1
Prigionieri	N°4 - M12				
Dadi esagonali	N°4 - M12				
Rondelle piane	N°4 - Ø12				
Cordone isolante	1	1	1	1	1
Tubi flessibili	N°2 - 1/2"x3/8"	N°2 - 1/2"x1/2"	N°2 - 1/2"x1/2"	N°2 - 3/4"x3/4"	N°2 - 3/4"x3/4"
Filtro	3/8"	3/8"	3/8"	1"	1"
Nipplo/I	N°2 - 1/2"x3/8"	N°2 - 1/2"x3/8"	N°2 - 1/2"x3/8"	N°2 - 3/4"x1"	N°2 - 3/4"x1"

TARGA IDENTIFICAZIONE BRUCIATORE

- 1 Logo aziendale
- 2 Ragione sociale azienda
 - Codice prodotto
- 4 Modello bruciatore
 - Matricola
- 6 Potenza combustibili liquidi
- 7 Potenza combustibili gassosi
- 8 Pressione combustibili gassosi
- 9 Viscosità combustibili liquidi
- 10 Potenza motore ventilatore
- 11 Tensione di alimentazione
- 12 Grado di protezione
- 13 Paese di costruzione e numeri di certificato di omologazione
- 14 Data di produzione mese / anno
- 15 Codice a barre matricola bruciatore

DATI REGISTRAZIONE PRIMA ACCENSIONE

Modello:	Data:	ora:
Tipo di gas	<u> </u>	
Indice di Wobbe inferiore		
Potere calorifico inferiore		
Portata min gas	Stm³/h	
Portata max gas	Stm³/h	
Potenza min gas	kW	
potenza max gas	kW	
Pressione gas di rete	hPa (mbar)	
Pressione gas a valle dello stabilizzatore	hPa (mbar)	
CO (alla potenza minima)	ppm	
CO2 (alla potenza minima)	%	
Nox (alla potenza minima)	ppm	
CO (alla potenza massima)	ppm	
CO2 (alla potenza massima)	%	
Nox (alla potenza massima)	ppm	
temperatura fumi		
temperatura aria		

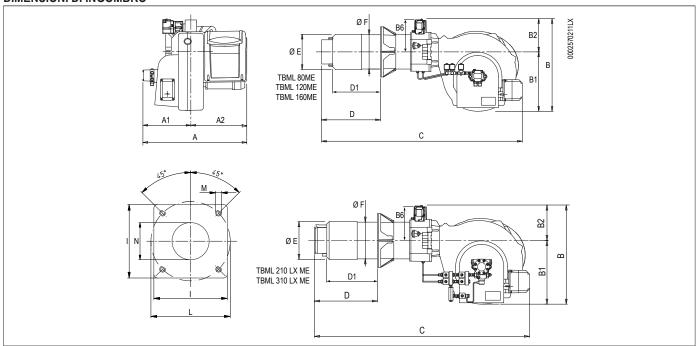
1) EMISSIONI GAS METANO

Classi definite secondo la normativa EN 676.

Classe	Emissioni NOx in mg/kWh gas metano
1	≤ 170
2	≤ 120
3	≤ 80
4	≤ 60

3) EMISSIONI GASOLIO

Classi definite secondo la normativa EN 267.


Classe	Emissioni NOx in mg/kWh combu-	Emissioni CO in mg/kWh combu-
Classe	stibile gasolio	stibile gasolio
1	≤ 250	≤ 110
2	≤ 185	≤ 110
3	≤ 120	≤ 60

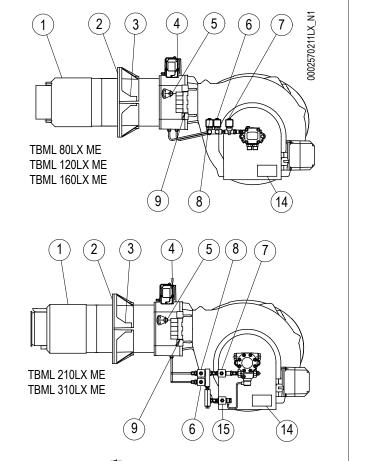
²) EMISSIONI GAS PROPANO

Emissioni CO metano / propano ≤ 100 mg/kWh

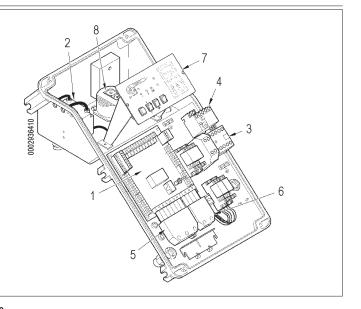
Classe	Emissioni NOx in mg/kWh gas propano
1	≤ 230
2	≤ 180
3	≤ 140
4	≤ 110

DIMENSIONI DI INGOMBRO

Modello	Α	A1	A2	В	B1	B2	B6	С
TBML 80 ME	700	330	370	580	380	200	200	1250
TBML 120 ME	700	330	370	580	380	200	200	1250
TBML 160 ME	700	330	370	580	380	200	200	1250
TBML 210 LX ME	770	350	420	600	400	200	200	1300
TBML 310 LX ME	880	465	415	600	400	200	200	1330

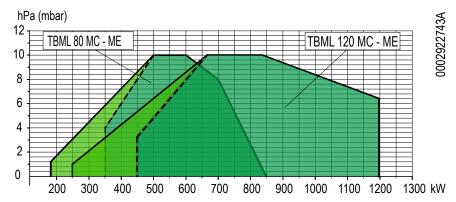

Modello	D	D1	ØE	ØF	I
TBML 80 ME	270 ÷ 440	180 ÷ 350	180	178	280
TBML 120 ME	285 ÷ 450	170 ÷ 335	224	219	320
TBML 160 ME	285 ÷ 450	160 ÷ 325	224	219	320
TBML 210 LX ME	285 ÷ 450	160 ÷ 325	224	219	320
TBML 310 LX ME	230 ÷ 440	221 ÷ 431	250	219	320

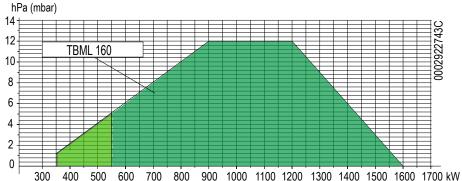
Modello	ØL	ØM	ØN
TBML 80 ME	250 ÷ 325	M12	190
TBML 120 ME	280 ÷ 370	M12	235
TBML 160 ME	280 ÷ 370	M12	235
TBML 210 LX ME	280 ÷ 370	M12	235
TBML 310 LX ME	310 ÷ 370	M12	255

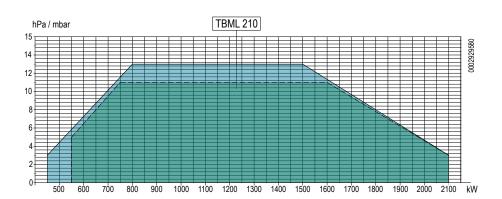

DESCRIZIONE COMPONENTI

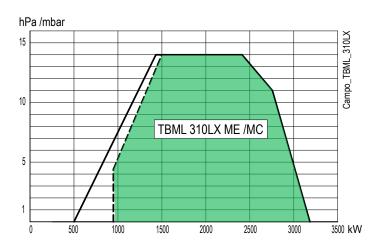
- 1 Testa di combustione
- 2 Guarnizione
- 3 Flangia attacco bruciatore
- 4 Flangia attacco rampa gas
- 5 Dispositivo regolazione testata
- 6 Elettrovalvola 2° stadio
- 7 Elettrovalvola di sicurezza
- 8 Elettrovalvola 1° stadio
- 9 Cerniera
- 10 Servomotore regolazione aria/gas
- 11 Pompa bruciatore
- 12 Quadro elettrico
- 13 Motore
- 14 Targa identificazione bruciatore
- 15 Elettrovalvola by-pass

- Apparecchiatura
- 2 Trasformatore d'accensione
- 3 Contattore motore
- 4 Relè termico
- 5 Connettore 7 poli
- 6 Connettore 4 poli
- 7 Pannello sinottico
- 8 Pressostato aria


12


(13)


(11)



CAMPO DI LAVORO

IMPORTANTE

Potenza termica min TBML 80 gpl = 190kW

IMPORTANTE

I campi di lavoro sono ottenuti su caldaie di prova rispondenti alla norma EN267 per i combustibili liquidi e EN676 per i combustibili gassosi, sono da considerarsi orientativi per gli accoppiamenti bruciatore-caldaia. Per il corretto funzionamento del bruciatore le dimensioni della camera di combustione devono essere rispondenti alla normativa vigente; in caso contrario vanno consultati i costruttori. Il bruciatore non deve operare al di fuori del campo di lavoro dato.

- - - Potenza minima regolabile a gasolio

PERICOLO / ATTENZIONE

Durante la fase di accensione e regolazione, verificare che le potenze massima e minima a cui viene regolato il bruciatore si trovino all'interno del campo di lavoro onde evitare danni all'impianto.

APPLICAZIONE DEL BRUCIATORE ALLA CALDAIA

Per la movimentazione del bruciatore, utilizzare catene o funi certificate e adeguate al peso del bruciatore utilizzando i punti di ancoraggio (21).

MONTAGGIO GRUPPO TESTA

- Adeguare la posizione della flangia di attacco (19) allentando le viti (6), la testa del bruciatore dovrà penetrare nel focolare della misura consigliata dal costruttore del generatore.
- Posizionare sul canotto la guarnizione isolante (13) interponendo la corda (2) tra la flangia e guarnizione.
- Fissare il gruppo testa alla caldaia (1) tramite i prigionieri, le rondelle e i relativi dadi in dotazione (7).

PERICOLO / ATTENZIONE

Sigillare completamente con materiale idoneo lo spazio tra il cannotto del bruciatore e il foro sul refrattario all'interno del portellone caldaia.

MONTAGGIO RAMPA GAS

Sono possibili diverse soluzioni di montaggio della rampa valvole come evidenziato nel disegno 0002937060.

Scegliere la posizione più idonea in base alla conformazione del locale caldaia e alla posizione di ingresso della tubazione gas.

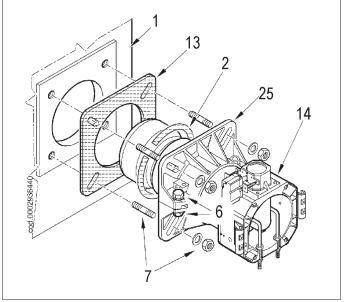
PERICOLO / ATTENZIONE

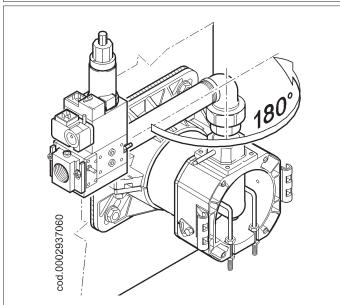
Con valvola di dimensioni notevoli, esempio DN65 oppure DN80 prevedere un adeguato supporto per evitare sollecitazioni eccessive al raccordo di attacco della rampa gas.

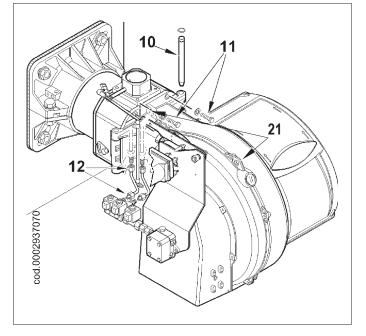
MONTAGGIO CORPO VENTILANTE

Posizionare le semicerniere presenti sulla chiocciola bruciatore in corrispondenza di quelle presenti sul gruppo testa.

- Infilare il perno cerniera (10) nella posizione ritenuta più idonea
- Collegare i cavi (accensione e ionizzazione) ai relativi elettrodi, chiudere la cerniera bloccando il bruciatore mediante le viti (11).


COMPLETAMENTO BRUCIATORE


- Rimuovere i tappi di protezione in plastica (gialli) dai raccordi posti sotto il gruppo testa e in prossimità delle elettrovalvole.
- Collegare i tubini gasolio (24) in dotazione al bruciatore ai rispettivi raccordi verificandone la perfetta tenuta idraulica.

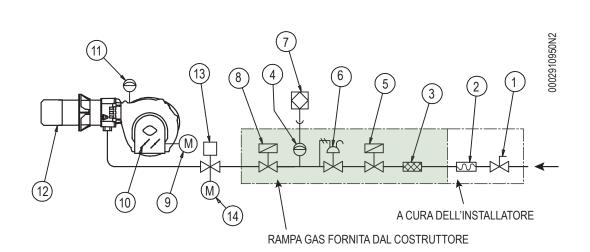

Sganciare le catene o funi dai relativi golfari e asole (21) del bruciatore.

CUFFIA FONICA

nel caso sia richiesto di ridurre il livello di pressione sonora è necessario installare una cuffia fonica adeguata. (vedi tecnolistino contattare il rivenditore).

LINEA DI ALIMENTAZIONE GAS

Lo schema di principio della linea di alimentazione gas è riportato nella figura sotto.

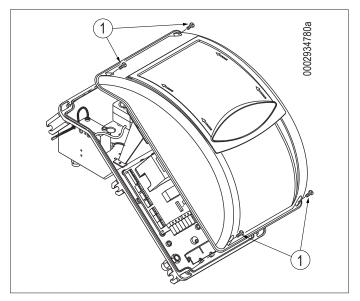

La rampa gas è omologata secondo normativa EN 676 e viene fornita separatamente dal bruciatore.

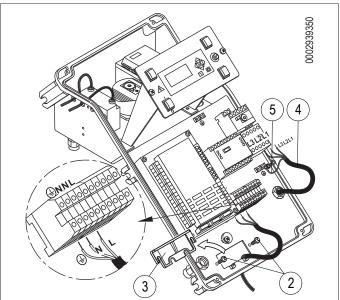
PERICOLO / ATTENZIONE

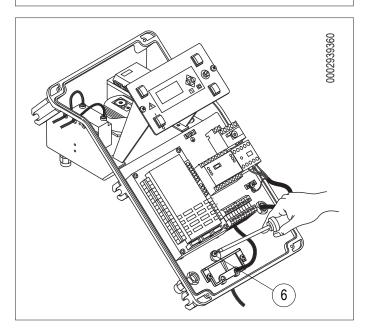
Occorre installare, a monte della valvola gas, una valvola di intercettazione manuale e un giunto antivibrante, disposti secondo quanto indicato nello schema di principio.

SCHEMA DI PRINCIPIO BRUCIATORI A GAS

- 1 Valvola di intercettazione manuale
- 2 Giunto antivibrante
- 3 Filtro gas
- 4 Pressostato di minima pressione gas e di controllo fughe gas
- 5 Valvola di sicurezza
- 6 Regolatore di pressione
- 7 Dispositivo di controllo tenuta valvole (obbligatorio per bruciatore con portata termica nominale massima superiore a 1200kW)
- 8 Valvola di lavoro
- 9 Servomotore regolazione aria
- 10 Serranda regolazione aria
- 11 Pressostato aria
- 12 Testa di combustione
- 13 Valvola farfalla gas
- 14 Servomotore regolazione gas




COLLEGAMENTI ELETTRICI


- Le linee elettriche devono essere distanziate dalle parti calde.
- L'installazione del bruciatore è consentita solo in ambienti con grado di inquinamento 2 come indicato nell'allegato M della norma EN 60335-1:2008-07.
- Assicurarsi che la linea elettrica a cui si vuol collegare l'apparecchio sia alimentata con valori di tensione e frequenza adatti al bruciatore.
- La linea di alimentazione trifase o monofase deve essere provvista di interruttore con fusibili. E' inoltre richiesto dalle Norme un interruttore sulla linea di alimentazione del bruciatore posto all'esterno del locale caldaia in posizione facilmente raggiungibile.
- La linea principale, il relativo interruttore con fusibili e l'eventuale limitatore devono essere adatti a sopportare la corrente massima assorbita dal bruciatore.
- Prevedere un interruttore onnipolare con distanza d'apertura dei contatti uguale o superiore a 3 mm per l'allacciamento alla rete elettrica, come previsto dalle normative di sicurezza vigenti.
- Per i collegamenti elettrici (linea e termostati) vedere il relativo schema elettrico.
- Sguainare l'isolante esterno del cavo di alimentazione nella misura strettamente necessaria al collegamento, evitando così che il filo possa venire a contatto con parti metalliche.

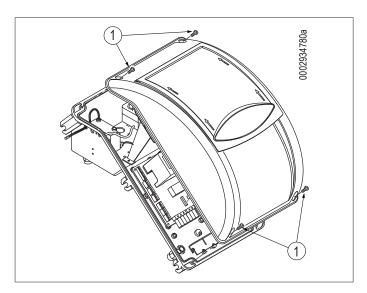
Per eseguire il collegamento del bruciatore alla linea di alimentazione procedere come segue:

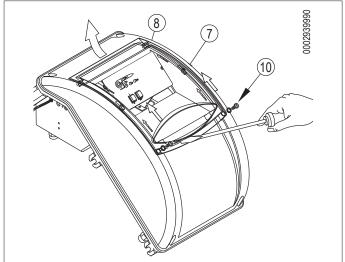
- Rimuovere il coperchio svitando le viti (1), senza togliere lo sportellino trasparente. In questo modo è possibile accedere al quadro elettrico del bruciatore.
- Allentare le viti (2) e, dopo aver rimosso la piastrina stringicavi (3), far passare attraverso il foro la spina a sette poli, l'eventuale a quattro poli e il cavo comando modulazione se previsto. Collegare i cavi di alimentazione (4) al teleruttore, fissare il cavo di terra (5) e serrare il relativo pressacavo.
- Riposizionare la piastrina stringicavi. Ruotare l'eccentrico (6) in modo che la piastrina eserciti una adeguata pressione sui cavi, quindi stringere le viti che fissano la piastrina. Collegare infine le relative spine e il cavo comando modulazione se previsto.

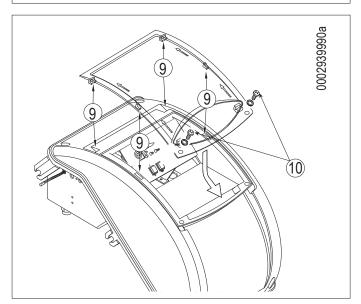
CAUTELA / AVVERTENZE

Gli alloggiamenti dei cavi per le spine sono previsti rispettivamente per cavo Ø 9,5÷10 mm e Ø 8,5÷9 mm, questo per assicurare il grado di protezione IP 54 (Norma CEI EN60529) relativamente al quadro elettrico.

• Per richiudere il coperchio del quadro elettrico, avvitare le viti (1) esercitando una coppia di serraggio di circa 5 Nm per assicurare la corretta tenuta.


Per accedere al pannello comandi (8), fare scorrere lo sportellino trasparente (7) per un breve tratto nella direzione della freccia indicata in figura esercitando una leggera pressione con un utensile (esempio cacciavite) nella direzione delle freccce, farlo scorrere per un breve tratto e separarlo dal coperchio.


 Per una corretta risistemazione dello sportellino trasparente sul quadro procedere posizionando i ganci in corrispondenza delle rispettive sedi (9), far scorrere lo sportellino nella direzione indicata dalla freccia e riavvitare le viti (10).



CAUTELA / AVVERTENZE

L'apertura del quadro elettrico del bruciatore è consentita esclusivamente a personale professionalmente qualificato.

LINEA DI ALIMENTAZIONE COMBUSTIBILE LIQUIDO

L'esposizione che segue tiene esclusivamente conto di quanto necessario per assicurare un buon funzionamento.

L'apparecchio è dotato di pompa auto-aspirante capace quindi di aspirare direttamente l'olio dalla cisterna anche per il primo riempimento. Questa affermazione è valida purchè sussistano i presupposti necessari, vedi schemi dimensionamento tubazioni.

Per assicurare un buon funzionamento è preferibile che le tubazioni, di aspirazione e ritorno, siano eseguite con raccordi saldati evitando le giunzioni a filetto che spesso consentono infiltrazioni di aria che disturbano il funzionamento della pompa e quindi del bruciatore.

Dove sia indispensabile eseguire un raccordo smontabile, si impieghi il sistema a flange saldate con interposta guarnizione resistente al combustibile, che assicura un'ottima tenuta.Per impianti dove la tubazione necessiti di un diametro relativamente modesto, consigliamo l'impiego del tubo in rame.

Nelle inevitabili giunzioni, consigliamo l'impiego di raccordi a "bicono". Di seguito sono riportati gli schemi di principio per diversi tipi di impianti in funzione della posizione della cisterna rispetto al bruciatore.La tubazione di aspirazione dovrà essere disposta in salita verso il bruciatore, per evitare accumulo di eventuali bolle di gas.Nel caso in cui vengano installati più bruciatori in un unica sala caldaie, è indispensabile che ogni bruciatore abbia un suo tubo di aspirazione.

Solo i tubi di ritorno possono confluire in un unico tubo di sezione adatta per raggiungere la cisterna. Evitare in ogni caso il collegamento diretto del tubo di ritorno sul tubo di aspirazione.

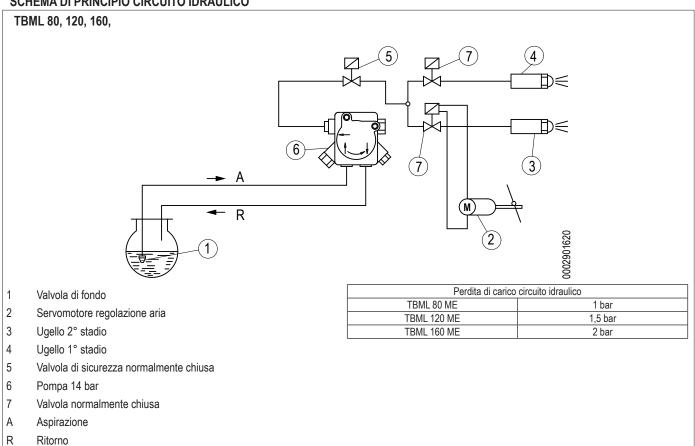
E' consigliabile coibentare convenientemente le tubazioni di aspirazione e di ritorno per evitare raffreddamenti funzionalmente dannosi.l diametri delle tubazioni (da rispettare rigorosamente) sono riportati nelle seguenti tabelle.

La depressione massima che la pompa può sopportare funzionando regolarmente e silenziosamente è di 0,47 bar; se tale valore viene superato, il regolare funzionamento della pompa non è più garantito.

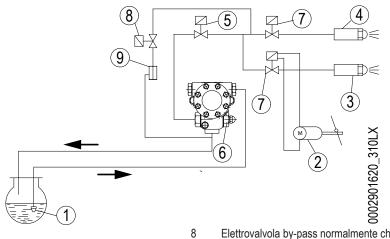
Pressione massima su aspirazione e ritorno = 1 bar.

POMPA AUSILIARIA

In alcuni casi (eccessiva distanza o dislivello) è necessario effettuare l'impianto con un circuito di alimentazione ad "anello", con pompa ausiliaria, evitando quindi il collegamento diretto della pompa del bruciatore alla cisterna.


In questo caso la pompa ausiliaria può essere messa in funzione alla partenza del bruciatore e fermata all'arresto dello stesso.

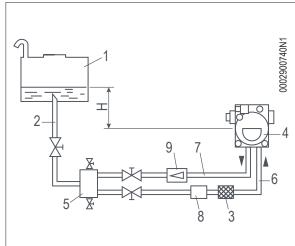
Si raccomanda di seguire sempre le prescrizioni sotto riportate:


- La pompa ausiliaria deve essere installata il più vicino possibile al liquido da aspirare.
- La prevalenza deve essere adeguata all'impianto in questione.
- Consigliamo una portata almeno pari alla portata della pompa del bruciatore.
- Le tubazioni di collegamento devono essere dimensionate in funzione della portata della pompa ausiliaria.
- Evitare assolutamente il collegamento elettrico della pompa ausiliaria direttamente al teleruttore del bruciatore.
- Regolare la pressione a circa 0,5 bar ÷ 1 bar, se il circuito è provvisto di regolatore di pressione.

SCHEMA DI PRINCIPIO CIRCUITO IDRAULICO

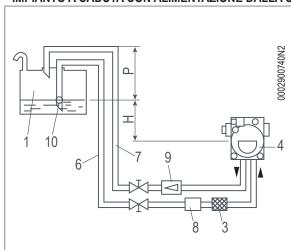
- 1 Valvola di fondo
- 2 Servomotore regolazione aria
- 3 Ugello 2° stadio
- 4 Ugello 1° stadio
- 5 Valvola di sicurezza normalmente chiusa
- 6 Pompa
- 7 Valvola normalmente chiusa
- 8 Elettrovalvola by-pass normalmente chiusa
- 9 Elettrovalvola regolazione by-pass
- Α Aspirazione
- R Ritorno

- Elettrovalvola by-pass normalmente chiusa
- 9 Elettrovalvola regolazione by-pass


Perdita di carico circuito idraulico				
TBML 210 LX ME 4 bar				
TBML 310 LX ME 4 bar				

SCHEMI DIMENSIONAMENTO TUBAZIONE

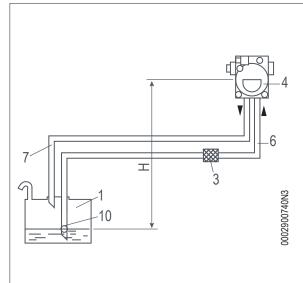
TBML 80 ..


IMPIANTO DI ALIMENTAZIONE PER GRAVITA'

- 1 Serbatoio
- 2 Tubazione di alimentazione
- 3 Filtro a rete
- 4 Pompa
- 5 Degasificatore
- 6 Tubo di aspirazione
- 7 Tubo di ritorno bruciatore
- 8 Dispositivo automatico intercettazione a bruciatore fermo
- 9 Valvola unidirezionale

Н	L. Complessiva
	Metri
Metri	Øi 14 mm
1	30
1,5	35
2	35
2,5	40
3	40

IMPIANTO A CADUTA CON ALIMENTAZIONE DALLA SOMMITA' DEL SERBATOIO

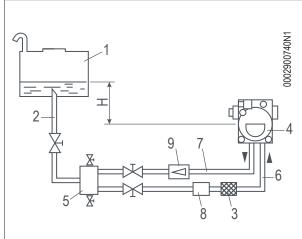


- 1 Serbatoio
- 3 Filtro a rete
- 4 Pompa
- 6 Tubo di aspirazione
- 7 Tubo di ritorno
- 8 Dispositivo automatico intercettazione a bruciatore fermo
- 9 Valvola unidirezzionale
- 10 Valvola di fondo

L. Complessiva	
Metri	
Øi 14 mm	
30	
35	
35	
40	
40	

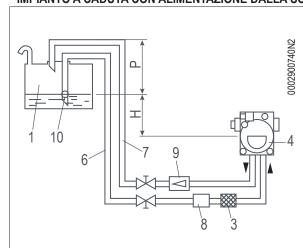
Quota P = 3.5 m. (Max)

IMPIANTO DI ALIMENTAZIONE IN ASPIRAZIONE


- 1 Serbatoio
- 3 Filtro a rete
- 4 Pompa
- 6 Tubo di aspirazione
- 7 Tubo di ritorno
- 10 Valvola di fondo

Н	L.Complessiva		
Metri	Metri		
ivietri	Øi 14 mm Øi 16 mm		
0,5	26	45	
1	22	38	
1,5	19	31	
2	14	25	
2,5	11	19	

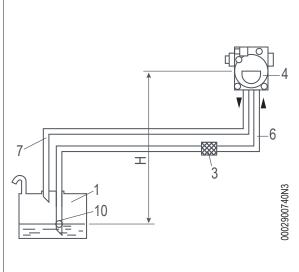
- N.B. Per eventuali organi mancanti nelle tubazioni attenersi alle norme vigenti.
- H = Dislivello tra minimo livello in serbatoio e asse pompa
- L = Per ogni gomito o saracinesca detrarre 0,25 m.


TBML 120, 160, IMPIANTO DI ALIMENTAZIONE PER GRAVITA'

- 1 Serbatoio
- 2 Tubazione di alimentazione
- 3 Filtro a rete
- 4 Pompa
- 5 Degasificatore
- 6 Tubo di aspirazione
- 7 Tubo di ritorno bruciatore
- 8 Dispositivo automatico intercettazione a bruciatore fermo
- 9 Valvola unidirezionale

Н	L. Complessiva
	Metri
Metri	Øi 16 mm
1	40
1,5	45
2	45
2,5	50
3	50

IMPIANTO A CADUTA CON ALIMENTAZIONE DALLA SOMMITA' DEL SERBATOIO



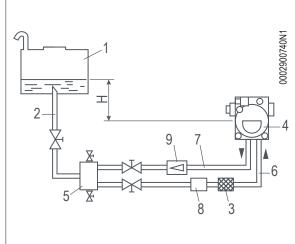
- 1 Serbatoio
- 3 Filtro a rete
- 4 Pompa
- 6 Tubo di aspirazione
- 7 Tubo di ritorno
- 8 Dispositivo automatico intercettazione a bruciatore fermo
- 9 Valvola unidirezzionale
- 10 Valvola di fondo

Н	L. Complessiva
	Metri
Metri	Øi 16 mm
1	40
1,5	45
2	45
2,5	50
3	50

Quota P = 3.5 m. (Max)

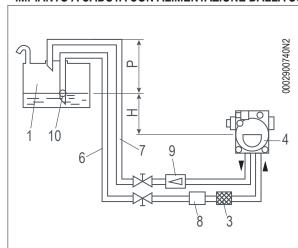
IMPIANTO DI ALIMENTAZIONE IN ASPIRAZIONE

- 1 Serbatoio
- 3 Filtro a rete
- 4 Pompa
- 6 Tubo di aspirazione
- 7 Tubo di ritorno
- 10 Valvola di fondo


Н	L.Complessiva		
Metri	Metri		
ivietri	Øi 14 mm	Øi 16 mm	
0,5	36 55		
1	30	48	
1,5	25	41	
2	20 32		
2,5	15	24	
3	10 15 4 7,5		
3,5			

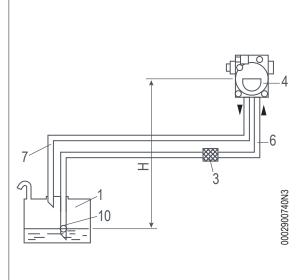
- N.B. Per eventuali organi mancanti nelle tubazioni attenersi alle norme vigenti.
- H = Dislivello tra minimo livello in serbatoio e asse pompa
- L = Per ogni gomito o saracinesca detrarre 0,25 m.

TBML 210, 310,


IMPIANTO DI ALIMENTAZIONE PER GRAVITA'

- 1 Serbatoio
- 2 Tubazione di alimentazione
- 3 Filtro a rete
- 4 Pompa
- 5 Degasificatore
- 6 Tubo di aspirazione
- 7 Tubo di ritorno bruciatore
- 8 Dispositivo automatico intercettazione a bruciatore fermo
- 9 Valvola unidirezionale

Н	L. Complessiva	
	Metri	
Metri	Øi 16 mm	
1	30	
1,5	35	
2	35	
2,5	40	
3	40	


IMPIANTO A CADUTA CON ALIMENTAZIONE DALLA SOMMITA' DEL SERBATOIO

- 1 Serbatoio
- 3 Filtro a rete
- 4 Pompa
- 6 Tubo di aspirazione
- 7 Tubo di ritorno
- 8 Dispositivo automatico intercettazione a bruciatore fermo
- 9 Valvola unidirezzionale
- 10 Valvola di fondo

Н	L. Complessiva
	Metri
Metri	Øi 16 mm
1	30
1,5	35
2	35
2,5	40
3	40
Misura = 3,5 m. (Max)	•

IMPIANTO DI ALIMENTAZIONE IN ASPIRAZIONE

- 1 Serbatoio
- 3 Filtro a rete
- 4 Pompa
- 6 Tubo di aspirazione
- 7 Tubo di ritorno
- 10 Valvola di fondo

Н	L.Complessiva		
Metri	Metri		
Metri	Øi. 16 mm	Øi. 18 mm	
0,5	21	34	
1	18	29	
1,5	15	24	
2	11,5	19	
2,5	8,5	14	
3	5,5	9	
3,5	- 3,5		

- N.B. Per eventuali organi mancanti nelle tubazioni attenersi alle norme vigenti.
- H = Dislivello tra minimo livello in serbatoio e asse pompa
- L = Per ogni gomito o saracinesca detrarre 0,25 m.

DESCRIZIONE DEL FUNZIONAMENTO CON COMBUSTIBILE LIQUIDO

PRECISAZIONE PER L'ACCENSIONE DEL BRUCIATORE MISTO

E' sconsigliabile sovradimensionare il bruciatore alla caldaia per riscaldamento e produzione di acqua calda sanitaria, in quanto il bruciatore può lavorare anche per lunghi periodi ad una sola fiamma, facendo lavorare la caldaia ad una potenzialità inferiore a quella richiesta; di conseguenza, i prodotti di combustione (fumi) escono ad una temperatura eccessivamente bassa (circa 180° C per olio combustibile e 130° C per gasolio), dando luogo a presenza di fuliggine allo sbocco del camino.

IMPORTANTE

Quando la caldaia lavora a potenzialità inferiori a quelle indicate dai tecnici, è molto probabile la formazione di condensa acida e di fuliggine in caldaia con conseguente rapido intasamento e corrosione della stessa.

Quando il bruciatore a due fiamme è installato su una caldaia per produzione acqua ad uso riscaldamento, deve essere collegato in modo da lavorare a regime normale con entrambe le fiamme, arrestandosi completamente, senza passaggio alla prima fiamma, quando la temperatura prestabilita viene raggiunta.

Per ottenere questo particolare funzionamento, non si installa il termostato della seconda fiamma, e fra i rispettivi morsetti della spina a quattro poli, si realizza il collegamento diretto (ponte).

In tal modo si utilizza solo la capacità del bruciatore di accendersi a portata ridotta per realizzare una accensione dolce, condizione indispensabile per le caldaie con camera di combustione in pressione (pressurizzata), ma molto utile anche nelle caldaie normali (camera di combustione in depressione). Il comando (inserzione o arresto) del bruciatore è subordinato ai soliti termostati di esercizio e sicurezza.

Il motore mette in rotazione la ventola che effettua un lavaggio con aria della camera di combustione e contemporaneamente la pompa del combustibile che determinano una circolazione nei condotti espellendo, attraverso il ritorno, eventuali bolle di gas. Questa fase di prelavaggio ha termine con l'apertura dell'elettrovalvole di funzionamento ciò consente al combustibile di raggiungere l'ugello ed, uscire in camera di combustione finemente polverizzato.

Appena il combustibile polverizzato esce dall'ugello viene incendiato dalla scarica presente tra gli elettrodi sin dalla partenza del motore.

Se compare regolarmente la fiamma, superato il tempo di sicurezza previsto dall'apparecchiatura, questa inserisce il servomotore regolazione aria che si porta in posizione di secondo stadio. Nella fase di passaggio dal primo al secondo stadio l'apparecchiatura inserisce l'elettrovalvola (normalmente chiusa) del secondo stadio.

L'apertura della valvola del secondo stadio consente al gasolio di raggiungere il secondo ugello; portando il bruciatore al funzionamento a pieno regime.

Dal momento della comparsa della fiamma in camera di combustione il bruciatore è controllato e comandato dal dispositivo controllo fiamma e dai termostati.

L'apparecchiatura di comando prosegue il programma e stacca il trasformatore d'accensione. Quando la temperatura o pressione in caldaia raggiunge il valore a cui è tarato il termostato o pressostato, lo stesso interviene determinando l'arresto del bruciatore.

Successivamente, per l'abbassarsi della temperatura o pressione al di sotto del valore di richiusura del termostato o pressostato, il bruciatore viene nuovamente acceso.

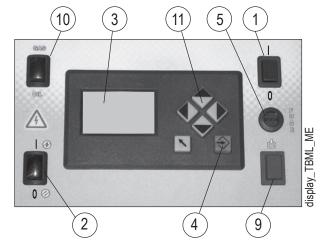
Se per qualsiasi motivo, durante il funzionamento viene a mancare la fiamma, interviene immediatamente (tempo un secondo) il dispositivo controllo fiamma che interrompendo l'alimentazione del relè, provoca la disinserzione delle elettrovalvole che intercettano il flusso di combustibile agli ugelli.

L'apparecchiatura si porta automaticamente in blocco.

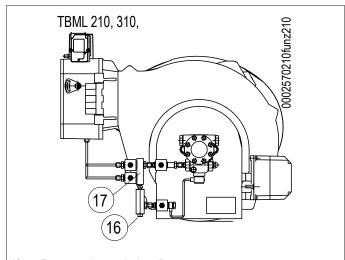
Se il programma viene interrotto (mancanza di tensione, intervento manuale, intervento di termostato, ecc.) durante la fase di prelavaggio il programmatore ritornerebbe nella sua posizione iniziale e ripeterebbe automaticamente tutta la fase di accensione del bruciatore.

CAUTELA / AVVERTENZE

La scelta degli ugelli in funzione della portata totale desiderata (2 ugelli in funzione), deve essere effettuata tenendo conto dei valori di portata corrispondenti alla pressione di lavoro di 12 bar del gasolio. Sostituendo gli ugelli è possibile variare notevolmente il rapporto tra il primo e il secondo stadio.


DESCRIZIONE DEL FUNZIONAMENTO TBML 210 - 310...

Sul circuito idraulico del bruciatore sono state inserite una elettrovalvola ed una valvola di regolazione di by-pass, per consentire nel funzionamento con combustibile liquido, una accensione morbida e senza vibrazioni.


Viene così scaricata una parte di gasolio limitatamente ai primi 3 / 4 secondi di funzionamento del bruciatore. Una volta terminata l'accensione l'elettrovalvola di by-pass si chiude e la portata risulta quella del primo stadio.

Agire con un cacciavite sulla vite di regolazione by-pass posta all'interno del tappo (16), (avvitare per aumentare la pressione) in modo da ottenere durante la sola fase di accensione, una pressione di circa 9 bar, misurata collegando un manometro nella posizione (17).

Correggere eventualmente la relativa quantità d'aria comburente agendo sulle regolazioni dell'apparecchiatura elettronica.

- 1 Interruttore generale ACCESO / SPENTO
- 2 Interruttore linea termostatica
- 3 Display
- 4 Tasto di sblocco o RESET
- 5 Fusibile.
- 9 Pulsante caricamento combustibile
- 10 Selettore combustibile
- 11 Tastiera di programmazione

- 16 Tappo per vite regolazione By-pass.
- 17 Attacco manometro pressione pompa.

PRIMO RIEMPIMENTO TUBAZIONE

Dopo aver controllato che i tappi di protezione posti sugli attacchi della pompa siano stati asportati, si procede come segue:

 Assicurarsi che la tensione di linea sia la stessa indicata in targa identificazione del bruciatore.

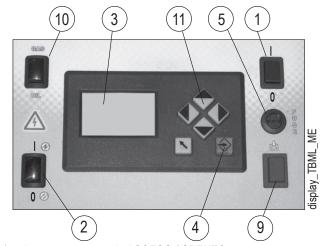
PERICOLO / ATTENZIONE

Attendere, per stabilire con sicurezza il senso di rotazione, che la ventola giri molto lentamente poichè è possibile una interpretazione errata del senso di rotazione.

- Il senso di rotazione della ventola può essere rilevato anche guardando la ventola attraverso la spia posta sulla parte posteriore della chiocciola.
- Se necessario invertire il senso di rotazione, scambiare di posto due fasi ai morsetti di ingresso della linea (L1_L2_L3).
- Per mettere in funzione il motore, chiudere manualmente il teleruttore (premendo sulla parte mobile) per qualche istante, ed osservare il senso di rotazione della ventola.
- Staccare se già sono stati collegati, i tubi flessibili dalla tubazione di aspirazione e da quella di ritorno.
- Immergere l'estremità del tubo flessibile di aspirazione in un recipiente contenente olio lubrificante o gasolio(non impiegare prodotti con bassa viscosità come petrolio, kerosene, ecc.).
- Premere ora sul pulsante (9) del quadro di comando per mettere in funzione il motore stesso e quindi la pompa.

PERICOLO / ATTENZIONE

Le pompe che lavorano a 2800 giri non devono assolutamente lavorare a secco, perchè si bloccherebbero (grippaggio) in brevissimo tempo.


- Collegare ora il flessibile al tubo di aspirazione ed aprire tutte le eventuali saracinesche poste su questo tubo, nonchè ogni altro eventuale organo di intercettazione del combustibile.
- Premere nuovamente il pulsante (9) per mettere in funzione la pompa che aspira il combustibile dalla cisterna.
- Quando si vede uscire il combustibile dal tubo di ritorno (non ancora collegato) fermare.

PERICOLO / ATTENZIONE

Se la tubazione è lunga, può essere necessario sfogare l'aria dall'apposito tappo, se la pompa non ne è provvista, asportare il tappo dell'attacco manometro.

 Collegare il tubo flessibile di ritorno alla tubazione ed aprire le saracinesche poste su questo tubo. Il bruciatore è così pronto per essere acceso.

- Interruttore generale ACCESO / SPENTO
- 2 Interruttore linea termostatica
- 3 Display
- 4 Tasto di sblocco o RESET
- 5 Fusibile.
- 9 Pulsante caricamento combustibile
- 10 Selettore combustibile
- 11 Tastiera di programmazione

ACCENSIONE E REGOLAZIONE **COMBUSTIBILE LIQUIDO**

CAUTELA / AVVERTENZE

Per avere una buona accensione ed una buona combustione con la sola prima fiamma occorre che l'erogazione del combustibile non sia inferiore alla portata minima rilevabile dalla targa identificazione bruciatore.

Prima dell'accensione è necessario assicurarsi che:

- · Sia selezionato il tipo di combustibile corretto.
- Verificare che la tensione della linea elettrica corrisponda a quella richiesta dal costruttore e, che tutti i collegamenti elettrici realizzati sul posto, siano eseguiti come da nostro schema elettrico.
- Verificare che lo scarico dei prodotti della combustione attraverso le serrande caldaia e serrande camino, possa avvenire liberamente.
- Verificare che ci sia acqua in caldaia e che le saracinesche dell'impianto siano aperte.
- · Controllare che tutte le saracinesche poste sulla tubazione di aspirazione e ritorno del combustibile siano aperte e così pure ogni altro organo di intercettazione.
- Ci sia combustibile in cisterna e acqua nella caldaia.
- Accertarsi che la testa di combustione penetri nel focolare nella misura richiesta dal costruttore della caldaia. Verificare che il dispositivo di chiusura aria sulla testa di combustione sia nella posizione adatta a garantire una corretta combustione, il passaggio dell'aria tra disco e testa deve essere sensibilmente ridotto nel caso di erogazione combustibile ridotta. Con un'erogazione di combustibile elevata anche il passaggio aria dovrà aumentare di conseguenza, vedere capitolo "REGOLAZIONE DELLA TESTA DI COMBUSTIONE".
- Verificare che gli ugelli applicati sul bruciatore siano adatti alla potenzialità della caldaia e, se necessario, sostituirli con altri.

CAUTELA / AVVERTENZE

Per la regolazione del bruciatore vedere la guida rapida fornita a corredo.

- Inserire l'interruttore generale e quello del quadro comando.
- Si inserisce il programmatore che incomincia a svolgere il programma prestabilito, inserendo i dispositivi del bruciatore.L'apparecchio si accende come descritto nel capitolo "DESCRIZIONE DEL FUN-ZIONAMENTO".

TARATURA RELÈ TERMICO

Il relè termico evita la rottura del motore causata dal forte aumento dell'assorbimento elettrico, oppure dalla mancanza di una fase.

Per la taratura, fare riferimento al valore nominale della corrente del motore.

Per sbloccare il bruciatore in caso di intervento del relè termico, premere il pulsante (RESET).

PERICOLO / ATTENZIONE

Il riarmo automatico può essere pericoloso quindi, dove presente, non impostare sul relè termico questa funzione.

PARTICOLARI POMPA

2 Attacco manometro e sfogo aria (1/8"G)

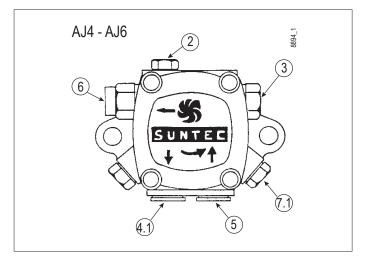
3 Vite regolazione pressione:

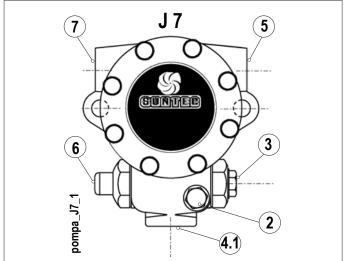
AN... 11 - 14 bar

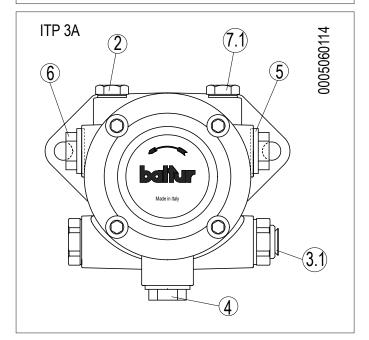
AJ / J... 11 - 16 bar

3.1 Asportare il dado per accedere alla vite di regolazione della pressione

- 4 Ritorno
- 4.1 Ritorno con grano di by-pass interno
- 5 Aspirazione
- 6 Mandata all'ugello
- 7 Attacco vuotometro (1/8"G)
- 7.1 Attacco vuotometro e grano di BY-PASS interno


CAUTELA / AVVERTENZE


La pompa viene pre regolata ad una pressione di 12 bar



Nel TBML 210, 310 la pompa viene pre regolata ad una pressione di 15 bar.

La pressione di ritorno in fase di accensione è di 9 bar.

DESCRIZIONE DEL FUNZIONAMENTO CON COMBUSTIBILE GASSOSO

Il bruciatore è a funzionamento completamente automatico; chiudendo l'interruttore generale e quello del quadro di comando il bruciatore viene inserito.

Il funzionamento del bruciatore viene gestito dall'apparecchiatura elettronica di comando e controllo.

I bruciatori ad aria soffiata con modulazione elettronica sono adatti per funzionare su focolari in forte pressione o in depressione secondo le relative curve di lavoro.

Uniscono alla grande stabilità di fiamma una sicurezza totale ed un alto rendimento.

Il bruciatore è dotato di camma elettronica comandata da microprocessore per esercizio a intermittenza, per il comando e la sorveglianza di bruciatori di gas ad aria soffiata.

Modulazione elettronica eseguita attraverso due motorini di regolazione (aria/gas) passo passo.

Nel bruciatore è integrato il controllo di tenuta delle valvole; per meglio comprendere il funzionamento della camma elettronica, leggere attentamente le istruzioni specifiche riportate nel manuale a corredo.

Si dice funzionamento a due stadi progressivi, in quanto il passaggio dalla prima alla seconda fiamma (dal regime minimo a quello massimo prefissato) avviene in modo progressivo sia come apporto di aria comburente sia come erogazione di combustibile con notevole vantaggio per la stabilità della pressione nella rete di alimentazione gas.

L'accensione è preceduta, come disposto dalle Norme, dalla preventilazione della camera di combustione, con aria aperta, la durata della stessa è di circa 30 secondi.

Se il pressostato aria ha rilevato la pressione sufficiente, si inserisce alla fine della fase di ventilazione il trasformatore di accensione e dopo tre secondi si aprono in sequenza le valvole di sicurezza e principale. Il gas raggiunge la testa di combustione, si miscela con l'aria fornita dalla ventola e si incendia. L'erogazione è regolata dalla valvola gas a farfalla.

La presenza della fiamma viene rilevata dal relativo dispositivo di controllo (fotocellula UV).

Il relè programmatore supera la posizione di blocco e dà tensione ai servomotori di regolazione dell'erogazione (aria/gas), che si portano al punto minimo (200).

Se il termostato di caldaia (o pressostato) di 2° stadio lo consente (regolato ad un valore di temperatura o pressione superiore a quella esistente in caldaia) i servomotori di regolazione dell'erogazione (aria / gas) iniziano a girare determinando un aumento graduale dell'erogazione di gas e della relativa aria di combustione fino a raggiungere l'erogazione massima a cui il bruciatore è stato regolato (999).

Il bruciatore resta nella posizione di massima erogazione fino a quando la temperatura o pressione raggiunge un valore sufficiente a determinare l'intervento della sonda che fa ruotare i servomotori di regolazione dell'erogazione (gas/aria) riducendo gradualmente l'erogazione del gas, della relativa aria comburente e del numero di giri del motore (se presente l'inverter) fino al valore minimo.

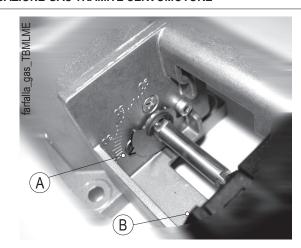
Se anche con erogazione al minimo si raggiunge il valore limite di temperatura o pressione a cui è regolato il dispositivo di controllo, il bruciatore viene arrestato.

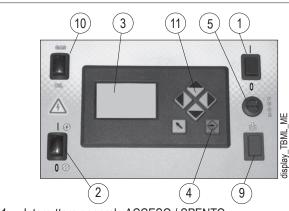
Riabbassandosi, la temperatura o pressione al di sotto del valore di intervento del dispositivo di controllo, il bruciatore viene nuovamente avviato secondo il programma precedentemente descritto.

Nel normale funzionamento la sonda di modulazione applicata alla caldaia rileva le variazioni di temperatura o pressione, ed automaticamente provvede ad adeguare l'erogazione di combustibile e aria comburente inserendo i relativi servomotori.

Il bruciatore riesce così ad ottimizzare la richiesta di calore da fornire alla caldaia.

Nel caso in cui la fiamma non compare entro tre secondi dall'apertura delle valvole del gas, l'apparecchiatura di controllo si mette in "blocco" (arresto completo del bruciatore e accensione della relativa spia di segnalazione).


Per "sbloccare" l'apparecchiatura occorre premere il pulsante di sbloc-

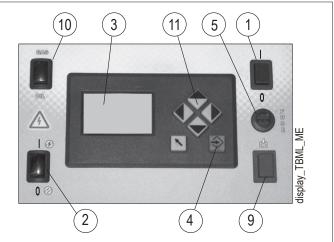

CAUTELA / AVVERTENZE

La camma elettronica comanda il bruciatore, azionando il servomotore dell'aria comburente, del gas e, se presente l'inverter del motore ventola, secondo una curva di lavoro avente dieci punti impostati (vedi tabella regolazione curva).

PARTICOLARE VALVOLA A FARFALLA DI REGOLAZIONE ERO-**GAZIONE GAS TRAMITE SERVOMOTORE**

- Scala graduata.
- Indice riferimento posizione valvola a farfalla gas.

- Interruttore generale ACCESO / SPENTO
- Interruttore linea termostatica
- Display
- Tasto di sblocco o RESET
- 5 Fusibile.
- 9 Pulsante caricamento combustibile
- Selettore combustibile
- Tastiera di programmazione


ACCENSIONE E REGOLAZIONE GAS METANO

- Effettuare lo spurgo dell'aria contenuta nella tubazione del gas con le cautele del caso e con porte e finestre aperte.
- Aprire il raccordo sulla tubazione in prossimità del bruciatore e successivamente, aprire un poco i relativi rubinetti di intercettazione del gas.

Attendere fino a quando si avverte l'odore caratteristico del gas e quindi chiudere il rubinetto.

- Attendere il tempo necessario, affinché il gas presente nel locale si sia disperso all'esterno. Ripristinare il collegamento del bruciatore alla tubazione del gas.
- Verificare che ci sia acqua in caldaia e che le saracinesche dell'impianto siano aperte.
- Verificare che lo scarico dei prodotti della combustione attraverso le serrande caldaia e serrande camino, possa avvenire liberamente.
- Verificare che la tensione della linea elettrica corrisponda a quella richiesta dal costruttore e, che tutti i collegamenti elettrici realizzati sul posto, siano eseguiti come da nostro schema elettrico.
- Accertarsi che la testa di combustione abbia lunghezza sufficiente per penetrare nel focolare nella misura richiesta dal costruttore della caldaia.
- Verificare che il dispositivo di regolazione aria sulla testa di combustione si nella posizione adatta per l'erogazione di combustibile richiesto.
- Il passaggio dell'aria tra disco e testa di combustione deve essere sensibilmente ridotto con erogazione minima di combustibile.
- Aumentare il flusso d'aria comburente all'aumento dell'erogazione di combustibile.
- Vedere capitolo "Regolazione dell'aria sulla testa di combustione".
- Applicare un manometro con scala adeguata (se l'entità della pressione prevista lo consente, è preferibile utilizzare uno strumento a colonna d'acqua, non utilizzare per pressioni modeste strumenti a lancetta) alla presa di pressione prevista sul pressostato gas.
- Con interruttore del quadro bruciatore in posizione "0" ed interruttore generale inserito, verificare chiudendo manualmente il teleruttore, che il motore del ventilatore giri nel senso corretto, se necessario, invertire i due cavi della linea che alimenta il motore per cambiare il senso di rotazione.
- In caso di utilizzo di inverter vedere le istruzioni specifiche presenti nella guida rapida.
- Inserire ora, l'interruttore generale. L'apparecchiatura di comando riceve così tensione ed il programmatore determina l'inserzione del bruciatore come descritto nel capitolo "Descrizione del funzionamento". Per la regolazione del bruciatore vedere l'istruzione della camma elettronica fornita a corredo.
- Dopo aver regolato il "minimo", (200) portare il bruciatore verso il massimo, operando sui comandi, attraverso la tastiera della camma elettronica.
- Effettuare il controllo della combustione con l'apposito strumento in tutti i punti intermedi della corsa di modulazione, (200 a 999) verificare anche la portata di gas erogata con la lettura del contatore.
- Verificare ora il corretto funzionamento automatico della modulazione. In questo modo l'apparecchiatura riceve il segnale dal regolatore elettronico di modulazione se il bruciatore è in versione modulante, oppure dal termostato o pressostato del secondo stadio se il bruciatore è in versione due stadi progressivi.

- Effettuare il controllo della combustione con l'apposito strumento in tutti i punti intermedi della corsa di modulazione, (dal carico minimo a a carico massimo) verificare anche la portata di gas erogata con la lettura del contatore.
- Verificare ora il corretto funzionamento automatico della modulazione portando l'apparecchiatura in posizione "AUTOMATICA". In questo modo la modulazione è inserita esclusivamente con il comando automatico della sonda di caldaia.

- 1 Interruttore generale ACCESO / SPENTO
- 2 Interruttore linea termostatica
- 3 Display
- 4 Tasto di sblocco o RESET
- 5 Fusibile.
- 9 Pulsante caricamento combustibile
- 10 Selettore combustibile
- 11 Tastiera di programmazione

SENSORE FIAMMA

La fotocellula è il dispositivo di controllo fiamma, e deve guindi essere in grado di intervenire se, durante il funzionamento, la fiamma si dovesse spegnere (questo controllo deve essere effettuato dopo almeno un minuto dalla avvenuta accensione).

Il valore della corrente della fotocellula per assicurare il funzionamento dell'apparecchiatura è riportato sullo schema elettrico.

Una leggera untuosità compromette fortemente il passaggio dei raggi attraverso il bulbo della fotocellula impedendo che, l'elemento sensibile interno, riceva la quantità di radiazione necessaria per un corretto funzionamento. Nel caso di imbrattamento del bulbo con gasolio, olio combustibile ecc.., è indispensabile pulire adeguatamente.

CAUTELA / AVVERTENZE

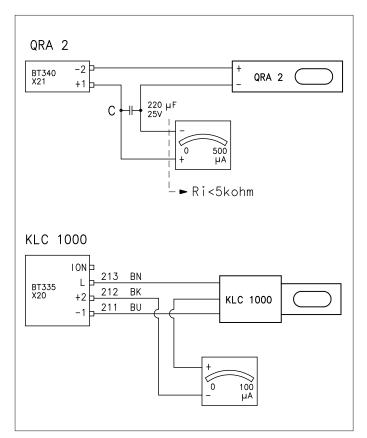
Il semplice contatto con le dita può lasciare una leggera untuosità, sufficiente a compromettere il funzionamento della fotocellula.

La fotocellula UV non rileva la luce del giorno o di una comune lampada.

L'eventuale verifica di sensibilità può essere fatta con la fiamma (accendino) oppure con la scarica elettrica che si manifesta tra gli elettrodi di un comune trasformatore d'accensione.

Per assicurare un buon funzionamento il valore della corrente sulla fotocellula UV deve essere sufficientemente stabile e non scendere al di sotto del valore minimo richiesto dall'apparecchiatura.

Può essere necessario ricercare sperimentalmente la miglior posizione facendo scorrere (spostamento assiale o di rotazione) il corpo che contiene la fotocellula rispetto alla fascetta di fissaggio.


Il bruciatore deve essere in grado di portarsi in blocco e restarci quando, in fase di accensione e nel tempo prestabilito dall'apparecchiatura di comando, non compare regolarmente la fiamma.

Il blocco comporta l'intercettazione immediata del combustibile e quindi, l'arresto del bruciatore con accensione della spia di blocco.

Per controllare l'efficienza della fotocellula e del blocco, operare come

- Mettere in funzione il bruciatore
- 2 Dopo almeno un minuto dall'avvenuta accensione estrarre la fotocellula, sfilandola dalla sua sede, simulando così la mancanza di fiamma. La Fiamma del bruciatore deve spegnersi e l'apparecchiatura si porta subito in "blocco".
- 3 L'apparecchiatura si può sbloccare solo con intervento manuale premendo l'apposito pulsante (sblocco). La prova dell'efficienza del blocco deve essere effettuata almeno due volte.

Verificare l'efficienza dei termostati o pressostati di caldaia (l'intervento deve arrestare il bruciatore).

PRESSOSTATO ARIA

Il pressostato aria ha lo scopo di mettere in sicurezza (blocco) l'apparecchiatura se la pressione dell'aria non è quella prevista.

Il pressostato deve quindi essere regolato per intervenire chiudendo il contatto NO (normalmente aperto) quando la pressione dell'aria nel bruciatore raggiunge il valore sufficiente.

Qualora il pressostato aria non rilevi una pressione superiore a quella di taratura, l'apparecchiatura esegue il suo ciclo ma non si inserisce il trasformatore d'accensione e non si aprono le valvole del gas e di consequenza il bruciatore si arresta in "blocco"

Per accertare il corretto funzionamento del pressostato aria occorre, con bruciatore acceso in 1° stadio, aumentare il valore di regolazione fino a verificarne l'intervento a cui deve conseguire l'immediato arresto in "blocco" del bruciatore.

Sbloccare il bruciatore, premendo l'apposito pulsante e riportare la regolazione del pressostato ad un valore sufficiente per rilevare la pressione di aria esistente durante la fase di funzionamento relativa al primo stadio.

Il punto di prelievo della pressione aria si trova a valle della serranda aria

Aggiustare la regolazione del pressostato a un valore leggermente inferiore alla effettiva pressione dell'aria rilevata in primo stadio di funzionamento. Sbloccare il bruciatore e verificare il corretto avviamento dello stesso.

PRESSOSTATI DI CONTROLLO DELLA PRESSIONE DEL GAS

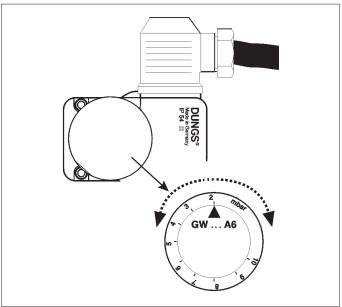
I pressostati di controllo della pressione del gas (minima e massima) hanno lo scopo di impedire il funzionamento del bruciatore quando la pressione del gas non risulta compresa nei valori previsti.

Il pressostato di controllo della pressione minima, utilizza il contatto NO (normalmente aperto) che si trova chiuso quando il pressostato rileva una pressione superiore a quella a cui è regolato.

Il pressostato di massima utilizza il contatto NC (normalmente chiuso) che si trova chiuso quando rileva una pressione inferiore a quella a cui è regolato.

La regolazione dei pressostati di minima e di massima deve avvenire all'atto del collaudo del bruciatore in funzione della pressione che si riscontra di volta in volta.

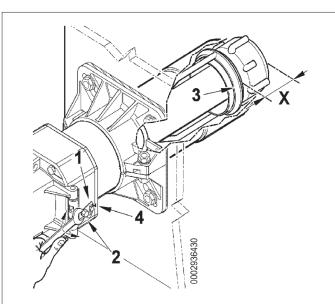
L'intervento (apertura di circuito) di qualsiasi pressostato quando il bruciatore è in funzione con fiamma accesa, determina immediatamente il blocco del bruciatore.


Alla prima accensione del bruciatore è indispensabile verificare il corretto funzionamento degli stessi.

IMPORTANTE

Nel caso in cui sulla rampa gas sia montato un solo pressostato, questo sarà di minima.

REGOLAZIONE ARIA SULLA TESTA DI COMBUSTIONE

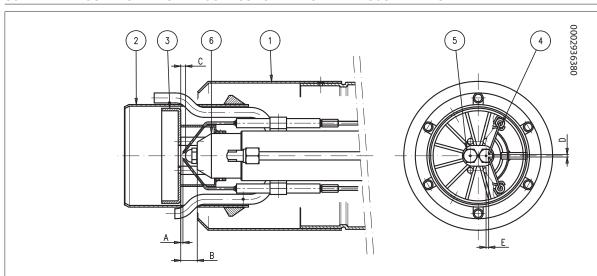

La testa di combustione è dotata di un dispositivo di regolazione che permette di aprire o chiudere il passaggio dell'aria tra il disco e la testa. Chiudendo il passaggio si riesce così ad ottenere, un'elevata pressione a monte del disco anche con le basse portate. L'elevata velocità e turbolenza dell'aria consente una migliore penetrazione della stessa nel combustibile e quindi, un'ottima miscela e stabilità di fiamma. Può essere indispensabile avere un'elevata pressione d'aria a monte del disco, per evitare pulsazioni di fiamma, questa condizione è praticamente indispensabile quando il bruciatore lavora su focolare pressurizzato e/o ad alto carico termico.

Il dispositivo che chiude l'aria sulla testa di combustione deve essere portato in una posizione tale da ottenere sempre dietro al disco un valore decisamente elevato della pressione dell'aria. Quando il bruciatore lavora alla massima erogazione, regolare la chiusura dell'aria sulla testa, tale da richiedere una sensibile apertura della serranda che regola il flusso aria. Iniziare quindi la regolazione con il dispositivo che chiude l'aria sulla testa di combustione in una posizione intermedia, accendendo il bruciatore per una regolazione orientativa come esposto precedentemente. Spostare in avanti o indietro la testa di combustione in modo da avere un flusso d'aria adeguato all'erogazione.

CAUTELA / AVVERTENZE

Le regolazioni sopra esposte sono indicative; posizionare la testa di combustione in funzione delle caratteristiche del focolare.

BRUCIATORE	Х	Valore indicato dall'indice 4
TBML 80 ME	87 ÷ 95	1 ÷ 1,5
TBML 120 ME	119 ÷ 155	1 ÷ 5
TBML 160 ME	119 ÷ 155	1 ÷ 5
TBML 210 LX ME	121 ÷ 157	1 ÷ 5
TBML 310 LX ME	1 ÷ 48	1 ÷ 5


X = Distanza testa-disco; regolare la distanza X seguendo le indi-

X = Distanza diffusore - disco per TBML 310LX ...

- Allentare la vite (1)
- · Agire sulla vite (2) per posizionare la testa di combustione (3) riferendosi all'indice (4)
- Regolare la distanza (x) tra il valore minimo e massimo secondo quanto indicato in tabella

SCHEMA DI REGOLAZIONE TESTA DI COMBUSTIONE E DISTANZA DISCO ELETTRODI

- 1						
	Modello	A	В	С	D	E
	TBML 80 MC/ME	1 ÷ 1, 5	20 ÷ 21	6 ÷ 7	3 ÷ 4	5 ÷ 6
	TBML 120 MC/ME	1 ÷ 1, 5	20 ÷ 21	6 ÷ 7	3 ÷ 4	8 ÷ 9
	TBML 160 MC/ME	1 ÷ 1, 5	20 ÷ 21	6 ÷ 7	3 ÷ 4	8 ÷ 9
	TBML 210 LX MC / LX ME	2 ÷ 3	23 ÷ 24	10 ÷ 11	3 ÷ 4	8 ÷ 9
	TBML 310 LX MC / LX ME	0,5	-	-	2,5 ÷ 3,5	7,5 ÷ 8,5

- 1 Diffusore
- 2 Diffusore interno
- 3 Disco fiamma
- 4 Elettrodi di accensione
- 5 Ugelli
- 6 Canotto porta ugelli

Dopo aver montato gli ugelli, verificare il corretto posizionamento di elettrodi e disco, secondo le quote indicate in mm.

E' opportuno eseguire una verifica delle quote dopo ogni intervento sulla testa.

Ugelli consigliati : STEINEN tipo SS 45° (TBML 80-120..)

MONARCH tipo HV 45° (TBML 160..)

STEINEN tipo SS 45° (TBML 210)

MONARCH tipo PLP 45° (TBML 210)

FLUIDICS tipo HF 45° (TBML 310)

PRECISAZIONI SULL'USO DEL PROPANO

- · Valutazione, indicativa, del costo di esercizio;
 - 1 m3 di gas liquido in fase gassosa ha un potere calorifico inferiore, di circa 25,6 kWh
 - Per ottenere 1 m3 di gas occorrono circa 2 Kg di gas liquido che corrispondono a circa 4 litri di gas liquido.
- · Disposizione di sicurezza
- Il gas propano liquido (G.P.L.) ha, in fase gassosa, un peso specifico superiore a quello dell'aria (peso specifico relativo all'aria = 1,56 per il propano) e quindi non si disperde come il metano che ha un peso specifico inferiore (peso specifico relativo all'aria = 0,60 per il metano), ma precipita e si spande al suolo (come fosse un liquido). Riassumiamo di seguito i concetti che riteniamo più importanti nell'impiego del gas propano liquido.
- L'utilizzo del gas propano liquido (G.P.L.) bruciatore e/o caldaia può avvenire solo in locali fuori terra e attestati verso spazi liberi. Non sono ammesse installazioni che utilizzano il G.P.L. in locali seminterrati o interrati.
- I locali dove si utilizza gas propano liquido devono avere aperture di ventilazione prive di dispositivo di chiusura ricavate su pareti esterne, rispettare le normative locali vigenti.
- Esecuzione impianto del gas propano liquido per assicurare un corretto funzionamento in sicurezza.

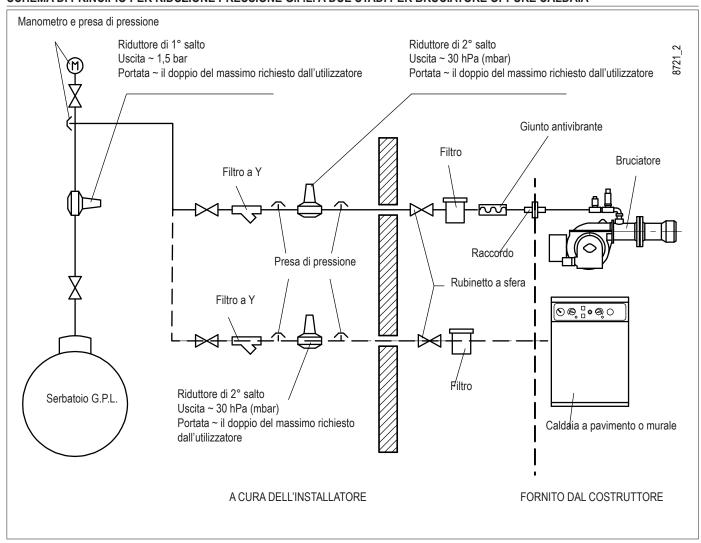
La gassificazione naturale, da batteria di bombole o serbatoio, è utilizzabile solo per impianti di piccola potenza. La capacità di erogazione in fase di gas, in funzione delle dimensioni del serbatoio e della temperatura minima esterna sono esposte, solo a titolo indicativo, nella seguente tabella.

PERICOLO / ATTENZIONE

La potenza massima e minima (kW) del bruciatore, è considerata con combustibile metano che coincide approssimativamente con quella del propano.

Controllo combustione

Per Contenere i consumi e principalmente per evitare gravi inconvenienti, regolare la combustione impiegando gli appositi strumenti. E' assolutamente indispensabile accertare che la percentuale di ossido di carbonio (CO) non superi il valore massimo ammesso dalla normativa locale vigente (impiegare l'analizzatore di combustione).

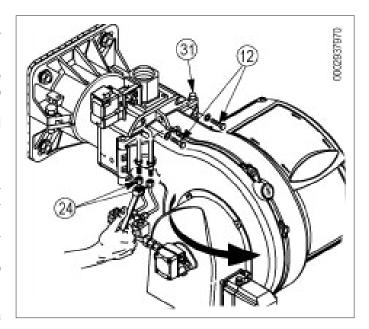

PERICOLO / ATTENZIONE

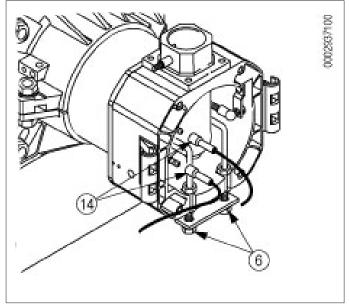
Sono esclusi dalla garanzia i bruciatori fonzionanti a gas propano liquido (G.P.L.) in impianti dove non siano state adottate le disposizioni sopra esposte.

Temperatura minima	- 15 °C	- 10 °C	- 5 °C	- 0 °C	+ 5 °C
Serbatoio 990 I.	1,6 Kg/h	2,5 Kg/h	3,5 Kg/h	8 Kg/h	10 Kg/h
Serbatoio 3000 I.	2,5 Kg/h	4,5 Kg/h	6,5 Kg/h	9 Kg/h	12 Kg/h
Serbatoio 5000 I.	4 Kg/h	6,5 Kg/h	11,5 Kg/h	16 Kg/h	21 Kg/h

SCHEMA DI PRINCIPIO PER RIDUZIONE PRESSIONE G.P.L. A DUE STADI PER BRUCIATORE OPPURE CALDAIA

MANUTENZIONE

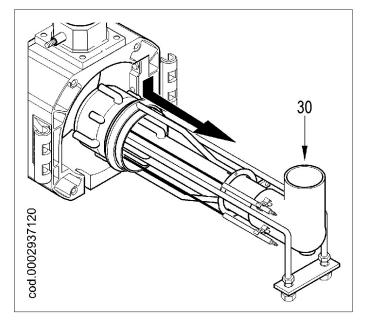

TBML 80 ..

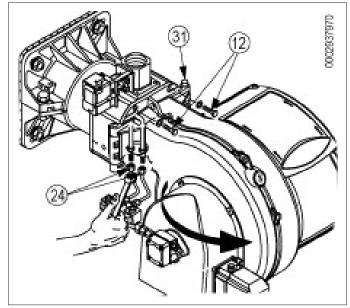

Effettuare almeno una volta all'anno e comunque in conformità alle norme vigenti, l'analisi dei gas di scarico della combustione verificando la correttezza dei valori di emissioni.

- Pulire la serranda aria, il pressostato aria con presa di pressione ed il relativo tubo se presenti.
- · Verificare lo stato degli elettrodi. Se necessario sostituirli.
- · Pulire la fotocellula. Se necessario sostituirla.
- Far pulire la caldaia ed il camino da personale specializzato in fumisteria, una caldaia pulita ha maggior rendimento, durata e silenziosità.
- Controllare che il filtro del combustibile sia pulito. Se necessario sostituirlo.
- Verificare che tutti i componenti della testa di combustione siano in buono stato, non deformati e privi di impurità o depositi derivanti dall'ambiente di installazione e/o da una cattiva combustione.
- Effettuare l'analisi dei gas di scarico della combustione verificando la correttezza dei valori di emissioni.

Nel caso si renda necessaria la pulizia della testa di combustione, estrarne i componenti seguendo la procedura sotto indicata:

- Scollegare i tubi gasolio (24) dai raccordi posti sotto il gruppo testa, fare attenzione al gocciolamento.
- Svitare le due viti (12) e ruotare il bruciatore attorno al perno (31) infilato nell'apposita cerniera.
- Dopo aver sfilato i cavi di accensione e ionizzazione (14) dai rispettivi elettrodi, allentare i due dadi di bloccaggio (6) dal gruppo di miscelazione. A questo punto allentare il dado (9) e svitare completamente la vite di fissaggio raccordo mandata (19).
- Utilizzando la chiave idonea, svitare la vite (8) nella direzione indicata dalla freccia sganciando la leva di avanzamento della testa di combustione.


TBML 120 - 160 - 210 - 310


Effettuare almeno una volta all'anno e comunque in conformità alle norme vigenti, l'analisi dei gas di scarico della combustione verificando la correttezza dei valori di emissioni.

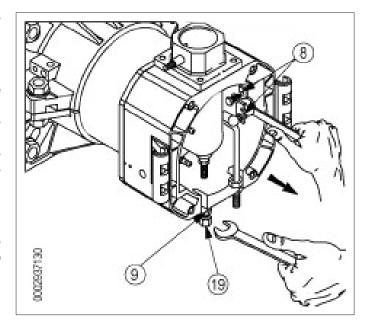
- Pulire la serranda aria, il pressostato aria con presa di pressione ed il relativo tubo se presenti.
- · Verificare lo stato degli elettrodi. Se necessario sostituirli.
- Pulire la fotocellula. Se necessario sostituirla.
- Far pulire la caldaia ed il camino da personale specializzato in fumisteria, una caldaia pulita ha maggior rendimento, durata e silenziosità.
- Controllare che il filtro del combustibile sia pulito. Se necessario sostituirlo.
- Verificare che tutti i componenti della testa di combustione siano in buono stato, non deformati e privi di impurità o depositi derivanti dall'ambiente di installazione e/o da una cattiva combustione.
- Effettuare l'analisi dei gas di scarico della combustione verificando la correttezza dei valori di emissioni.

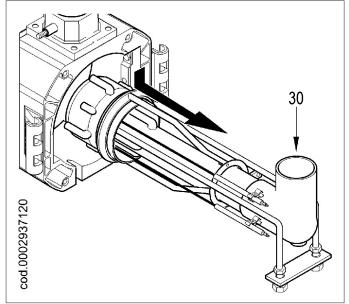
Nel caso si renda necessaria la pulizia della testa di combustione, estrarne i componenti seguendo la procedura sotto indicata:

- Scollegare i tubini gasolio (24) dai raccordi posti sotto il gruppo testa (attenzione al gocciolamento).
- Svitare le due viti (12) e ruotare il bruciatore attorno al perno (31) infilato nell'apposita cerniera.
- Dopo aver sfilato i cavi di accensione e ionizzazione (14) dai rispettivi elettrodi, allentare i due dadi di bloccaggio (6) dal gruppo di miscelazione. A questo punto allentare il dado (9) e svitare completamente la vite di fissaggio raccordo mandata (19).

· Utilizzando la chiave idonea, svitare la vite (8) nella direzione indicata dalla freccia sganciando la leva di avanzamento della testa di combustione.

CAUTELA / AVVERTENZE


Nei bruciatori TBML 200-260-360 .. non è necessario sganciare la leva regolazione testa.


- · Abbassare leggermente il raccordo mandata gas (30) e sfilare l'intero gruppo di miscelazione nella direzione indicata dalla freccia.
- · Completate le operazioni di manutenzione, procedere con il rimontaggio della testa di combustione, seguendo a ritroso il percorso sopra descritto, dopo aver verificato la corretta posizione degli elettrodi di accensione e di ionizzazione.

PERICOLO / ATTENZIONE

Al momento della chiusura del bruciatore, dopo aver collegato i cavi degli elettrodi ai terminali, bloccare gli stessi al raccordo mandata gas utilizzando una fascetta.

TEMPI DI MANUTENZIONE

Descrizione particolare	Azione da eseguire	Gas	Gasolio
	TESTA DI COMBUSTIONE		
ELETTRODI	CONTROLLO VISIVO, INTEGRITA' CERAMICHE, SMERIGLIATURA ESTREMITA', VERIFICARE DISTANZA, VERIFICARE CONNESSIONE ELETTRICA	ANNUO	ANNUO
DISCO FIAMMA	CONTROLLO VISIVO INTEGRITA' EVENTUALI DEFORMAZIONI, PULIZIA	ANNUO	ANNUO
SONDA DI IONIZZAZIONE	CONTROLLO VISIVO, INTEGRITA' CERAMICHE, SMERIGLIATURA ESTREMITA', VERIFICARE DISTANZA, VERIFICARE CONNESSIONE ELETTRICA	ANNUO	N.A.
COMPONENTI TESTA COMBUSTIONE	CONTROLLO VISIVO INTEGRITA' EVENTUALI DEFORMAZIONI, PULIZIA	ANNUO	ANNUO
UGELLI COMBUSTIBILE LIQUIDO	SOSTITUZIONE	N.A.	ANNUO
LANCIA COMBUSTIBILE LIQUIDO	CONTROLLO ED EVENTUALE SOSTITUZIONE ELETTROVALVOLA E ANELLI DI TENUTA, PULIZIA ORIFIZIO E SWIRLER	N.A.	ANNUO
GUARNIZIONE ISOLANTE	CONTROLLO VISIVO TENUTA ED EVENTUALE SOSTITUZIONE	ANNUO	ANNUO
GUARNIZIONE RACCORDO MANDATA GAS	CONTROLLO VISIVO TENUTA ED EVENTUALE SOSTITUZIONE	ANNUO	N.A.
5.10	LINEA ARIA		l
GRIGLIA/SERRANDE ARIA	PULIZIA	ANNO	ANNO
CUSCINETTI SERRANDA ARIA	INGRASSAGGIO	ANNO	ANNO
VENTILATORE	PULIZIA VENTOLA E CHIOCCIOLA, INGRASSAGGIO ALBERO MOTORE	ANNO	ANNO
PRESSOSTATO ARIA	PULIZIA	ANNO	ANNO
PRESA E CONDOTTI PRESSIONE ARIA	PULIZIA	ANNO	ANNO
THEORE CONDOTTT RECOGNETION	COMPONENTI DI SICUREZZA	711110	744140
SENSORE FIAMMA	PULIZIA	ANNO	ANNO
PRESSOSTATO GAS	VERIFICA FUNZIONALE	ANNO	N.A.
1112000011110 0/10	COMPONENTI VARI	74410	14.7 t.
MOTORI ELETTRICI	PULIZIA VENTOLA RAFFREDDAMENTO, VERIFICA RUMOROSITÁ CUSCINETTI	ANNO	ANNO
CAMMA MECCANICA	VERIFICA USURA E FUNZIONALITÁ, INGRASSAGGIO PATTINO E VITI	ANNO	ANNO
LEVE/TIRANTI/SNODI SFERICI	CONTROLLO EVENTUALI USURE, LUBRIFICAZIONE COMPONENTI	ANNO	ANNO
IMPIANTO ELETTRICO	VERIFICA CONNESSIONI E SERRAGGIO MORSETTI	ANNO	ANNO
INVERTER	PULIZIA VENTOLA DI RAFFREDDAMENTO E SERRAGGIO MORSETTI	ANNO	ANNO
SONDA CO	PULIZIA E CALIBRAZIONE	ANNO	ANNO
SONDA O2	PULIZIA E CALIBRAZIONE	ANNO	ANNO
KIT ESTRAZIONE TESTA COMBUSTIO- NE	VERIFICA USURA E FUNZIONALITÁ	ANNO	ANNO
	LINEA COMBUSTIBILE		I
TUBI FLESSIBILI	SOSTITUZIONE	N.A.	5 ANNI
FILTRO POMPA	PULIZIA	N.A.	ANNO
FILTRO DI LINEA	PULIZIA / SOSTITUZIONE ELEMENTO FILTRANTE	N.A.	ANNO
FILTRO SERBATOIO OLIO	PULIZIA AD OLIO COMBUSTIBILE FREDDO	N.A.	N.A.
FILTRO GAS	SOSTITUIRE ELEMENTO FILTRANTE	ANNO	N.A.
TENUTE IDRAULICHE/GAS	VERIFICA EVENTUALI PERDITE	ANNO	N.A.
PRERISCALDATORE OLIO	PULIZIA, SCARICO CONDENSA DA TAPPO INFERIORE AD OLIO COMBUSTIBILE FREDDO	N.A.	N.A.
	PARAMETRI DI COMBUSTIONE	,	
CONTROLLO CO	CONFRONTO CON VALORI REGISTRATI ALL'AVVIAMENTO DEL'IMPIANTO	ANNO	ANNO
CONTROLLO CO2	CONFRONTO CON VALORI REGISTRATI ALL'AVVIAMENTO DEL'IMPIANTO	ANNO	ANNO
CONTROLLO INDICE DI FUMO BACHA- RACH	CONFRONTO CON VALORI REGISTRATI ALL'AVVIAMENTO DEL'IMPIANTO	N.A.	ANNO
CONTROLLO NOX	CONFRONTO CON VALORI REGISTRATI ALL'AVVIAMENTO DEL'IMPIANTO	ANNO	ANNO
CONTROLLO CORRENTE DI IONIZZA- ZIONE	CONFRONTO CON VALORI REGISTRATI ALL'AVVIAMENTO DEL'IMPIANTO	ANNO	N.A.
CONTROLLO TEMPERATURA FUMI	CONFRONTO CON VALORI REGISTRATI ALL'AVVIAMENTO DEL'IMPIANTO	ANNO	ANNO
CONTROLLO PRESSIONE OLIO MAN- DATA/RITORNO	CONFRONTO CON VALORI REGISTRATI ALL'AVVIAMENTO DEL'IMPIANTO	N.A.	ANNO
REGOLATORE PRESSIONE GAS	RILIEVO PRESSIONE ALL'AVVIAMENTO	ANNO	N.A.

1

IMPORTANTE

Per utilizzi gravosi o con combustibili particolari, gli intervalli tra una manutenzione e la successiva, dovranno essere ridotti adeguandoli alle effettive condizioni di impiego secondo le indicazioni del manutentore.

VITA ATTESA

La vita attesa dei bruciatori e dei relativi componenti dipende molto dal tipo di applicazione su cui il bruciatore è installato, dai cicli, dalla potenza erogata, dalle condizioni dell'ambiente in cui si trova, dalla frequenza e modalità di manutenzione, ecc. ecc.

Le normative relative ai componenti di sicurezza prevedono una vita attesa di progetto espressa in cicli e/o anni di funzionamento.

Tali componenti garantiscono un corretto funzionamento in condizioni operative "normali" (*) con manutenzione periodica secondo le indicazioni riportate nel manuale.

La seguente tabella illustra la vita attesa di progetto dei principali componenti di sicurezza; i cicli di funzionamento indicativamente corrispondono alle partenze del bruciatore.

In prossimità del raggiungimento di tale limite di vita attesa il componente deve essere sostituito con un ricambio originale.

IMPORTANTE

le condizioni di garanzia (eventualmente fissate in contratti e/o note di consegna o di pagamento) sono indipendenti e non fanno riferimento alla vita attesa di seguito indicata.

(*) Per condizioni operative "normali" si intendono applicazioni su caldaie ad acqua e generatori di vapore oppure applicazioni industriali conformi alla norma EN 746, in ambienti con temperature nei limiti previsti dal presente manuale e con grado di inquinamento 2 conformemente all'allegato M della norma EN 60204-1.

Commonweate di circura	Vita attesa di progetto					
Componente di sicurezza	Cicli di funzionamento	Anni di funzionamento				
Apparecchiatura	250 000	10				
Sensore fiamma (1)	n.a.	10 000 ore di funzionamento				
Controllo di tenuta	250 000	10				
Pressostato gas	50 000	10				
Pressostato aria	250 000	10				
Regolatore di pressione gas (1)	n.a.	15				
Valvole gas (con controllo di tenuta)	Sino alla segnalazione della prima anomalia di tenuta					
Valvole gas (senza controllo di tenuta) (2)	250 000	10				
Servomotori	250 000	10				
Tubi flessibili combustibile liquido	200	5 (ogni anno per bruciatori ad olio combustibile o in				
Tubi ilessibili combustibile ilquido	n.a.	presenza di biodiesel nel gasolio/kerosene)				
Valvole combustibile liquido	250 000	10				
Girante del ventilatore aria	50 000 partenze	10				

⁽¹⁾ Le caratteristiche possono degradare nel tempo; nel corso della manutenzione annuale il sensore deve essere verificato ed in caso di degrado del segnale fiamma va sostituito.

⁽²⁾ Utilizzando normale gas di rete.

TABELLA PORTATA UGELLI

Ugello										Pression	one Por	npa bar										Ugello
G.P.H.	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	G.P.H.
0,40	1,18	1,27	1,36	1,44	1,52	1,59	1,67	1,73	1,80	1,86	1,92	1,98	2,04	2,10	2,15	2,20	2,25	2,31	2,36	2,40	2,45	0,40
0,50	1,47	1,59	1,70	1,80	1,90	1,99	2,08	2,17	2,25	2,33	2,40	2,48	2,55	2,62	2,69	2,75	2,82	2,88	2,94	3,00	3,05	0,50
0,60	1,77	1,91	2,04	2,16	2,28	2,39	2,50	2,60	2,70	2,79	2,88	2,97	3,06	3,14	3,22	3,30	3,38	3,46	3,53	3,61	3,68	0,60
0,65	1,91	2,07	2,21	2,34	2,47	2,59	2,71	2,82	2,92	3,03	3,12	3,22	3,31	3,41	3,49	3,58	3,66	3,75	3,83	3,91	3,98	0,65
0,75	2,20	2,38	2,55	2,70	2,85	2,99	3,12	3,25	3,37	3,49	3,61	3,72	3,82	3,93	4,03	4,13	4,23	4,32	4,42	4,51	4,60	0,75
0,85	2,50	2,70	2,89	3,06	3,23	3,39	3,54	3,68	3,82	3,96	4,09	4,21	4,33	4,45	4,57	4,68	4,79	4,90	5,00	5,11	5,21	0,85
1,00	2,94	3,18	3,40	3,61	3,80	3,99	4,16	4,33	4,50	4,65	4,81	4,96	5,10	5,24	5,37	5,51	5,64	5,76	5,89	6,01	6,13	1,00
1,10	3,24	3,50	3,74	3,97	4,18	4,38	4,58	4,77	4,95	5,12	5,29	5,45	5,61	5,76	5,91	6,06	6,20	6,34	6,48	6,61	6,74	1,10
1,20	3,53	3,82	4,08	4,33	4,56	4,78	5,00	5,20	5,40	5,59	5,77	5,95	6,12	6,29	6,45	6,61	6,76	6,92	7,07	7,21	7,35	1,20
1,25	3,68	3,97	4,25	4,50	4,75	5,00	5,20	5,40	5,60	5,80	6,00	6,20	6,35	6,55	6,70	6,85	7,05	7,20	7,35	7,50	7,65	1,25
1,35	3,97	4,29	4,59	4,87	5,13	5,38	5,62	5,85	6,07	6,28	6,49	6,69	6,88	7,07	7,26	7,44	7,61	7,78	7,95	8,11	8,27	1,35
1,50	4,42	4,77	5,10	5,41	5,70	5,90	6,24	6,50	6,75	6,98	7,21	7,43	7,65	7,86	8,06	8,26	8,46	8,65	8,83	9,01	9,19	1,50
1,65	4,86	5,25	5,61	5,95	6,27	6,58	6,87	7,15	7,42	7,68	7,93	8,18	8,41	8,64	8,87	9,09	9,30	9,51	9,71	9,92	10,11	1,65
1,75	5,15	5,56	5,95	6,31	6,65	6,98	7,29	7,58	7,87	8,15	8,41	8,67	8,92	9,17	9,41	9,64	9,86	10,09	10,30	10,52	10,72	1,75
2,00	5,89	6,30	6,80	7,21	7,60	7,97	8,33	8,67	8,99	9,31	9,61	9,91	10,20	10,48	10,75	11,01	11,27	11,53	11,78	12,02	12,26	2,00
2,25	6,62	7,15	7,65	8,15	8,55	8,97	9,37	9,75	10,12	10,47,	10,85	11,15	11,47	11,79	12,09	12,39	12,68	12,97	13,25	13,52	13,79	2,25
2,50	7,36	7,95	8,50	9,01	9,50	9,97	10,41	10,83	11,24	11,64	12,02	12,39	12,75	13,10	13,44	13,77	14,09	14,41	14,72	15,02	15,32	2,50
3,00	8,83	9,54	10,20	10,82	11,40	11,96	12,49	13,00	13,49	13,96	14,42	14,87	15,30	15,72	16,12	16,52	16,91	17,29	17,66	18,03	18,35	3,00
3,50	10,30	11,13	11,90	12,62	13,30	13,95	14,57	15,17	15,74	16,29	16,83	17,34	17,85	18,34	18,81	19,28	19,73	20,17	20,61	21,03	21,45	3,50
4,00	11,77	12,72	13,60	14,42	15,20	15,94	16,65	17,33	17,99	18,62	19,23	19,82	20,40	20,95	21,50	22,03	22,55	23,06	23,55	24,04	24,51	4,00
4,50	13,25	14,31	15,30	16,22	17,10	17,94	18,73	19,50	20,24	20,95	21,63	22,30	22,95	23,57	24,19	24,78	25,37	25,94	26,49	27,04	27,58	4,50
5,00	14,72	15,90	17,00	18,03	19,00	19,93	20,82	21,67	22,48	23,27	24,04	24,78	25,49	26,19	26,87	27,54	28,19	28,82	29,44	30,05	30,64	5,00
5,5	16,19	17,49	18,70	19,83	20,90	21,92	22,90	23,83	24,73	25,60	26,44	27,25	28,04	28,81	29,56	30,29	31,00	31,70	32,38	33,05	33,70	5,5
6,00	17,66	19,00	20,40	21,63	22,80	23,92	24,98	26,00	26,98	27,93	28,84	29,73	30,59	31,43	32,25	33,04	33,82	34,58	35,33	36,05	36,77	6,00
6,50	19,13	20,67	22,10	23,44	23,70	25,91	27,06	28,17	29,23	30,26	31,25	32,21	33,14	34,05	34,94	35,80	36,64	37,46	38,27	39,06	39,83	6,50
7,00	20,60	22,26	23,79	25,24	26,60	27,60	29,14	30,33	31,48	32,58	33,65	34,69	35,69	36,67	37,62	38,55	39,46	40,35	41,21	42,06	42,90	7,00
7,50	22,07	23,85	25,49	27,04	28,50	29,90	31,22	32,50	33,73	34,91	36,05	37,16	38,24	39,29	40,31	41,31	42,28	43,23	44,16	45,07	45,96	7,50
8,30	24,43	26,39	28,21	29,93	31,54	33,08	34,55	35,97	37,32	38,63	39,90	41,13	42,32	43,48	44,61	45,71	46,79	47,84	48,87	49,88	50,86	8,30
9,50	27,96	30,21	32,29	34,25	36,10	37,87	39,55	41,17	42,72	44,22	45,67	47,07	48,44	48,77	51,06	52,32	53,55	54,76	55,93	57,09	58,22	9,50
10,50	30,90	33,39	35,69	37,86	40,06	41,73	43,74	45,41	47,20	48,90	50,50	52,00	53,50	55,00	56,40	57,80	59,20	60,50	61,80	63,10	64,30	10,50
12,00	35,32	38,20	40,80	43,30	45,60	47,80	50,00	52,00	54,00	55,90	57,70	59,50	61,20	62,90	64,50	66,10	67,60	69,20	70,70	72,10	73,60	12,00
13,80	40,62	43,90	46,90	49,80	52,40	55,00	57,50	59,80	62,10	64,20	66,30	68,40	70,40	72,30	74,30	76,00	77,80	79,50	81,30	82,90	84,60	13,80
15,30	45,03	48,60	52,00	55,20	58,10	61,00	63,70	66,30	68,80	71,10	73,60	75,80	78,00	80,20	82,20	84,30	86,20	88,20	90,10	91,90	93,80	15,30
17,50	55,51	55,60	59,50	63,10	66,50	69,80	72,90	75,80	78,70	81,50	84,10	86,70	89,20	91,70	94,10	96,40	98,60	100,90	103,00	105,20	107,20	17,50
19,50	57,40	62,00	66,30	70,30	74,10	77,70	81,20	84,50	87,70	90,80	93,70	96,60	99,40	102,20	104,80	107,40	109,90	112,40	114,80	117,20	119,50	19,50
21,50	63,20	68,40	73,10	77,50	81,70	85,70	89,50	93,20	96,70	100,10	103,40	106,50	109,60	112,60	115,60	118,40	121,20	123,90	126,60	129,20	131,80	21,50
24,00	70,64	76,30	81,60	86,50	91,20	95,70	99,90	104,00	107,90	111,70	115,40	118,90	122,40	125,70	129,00	132,20	135,30	138,30	141,30	144,20	147,10	24,00
28,00	82,41	89,00	95,20	101,00	106,40	111,60	116,60	121,30	125,90	130,30	134,60	138,70	142,80	146,70	150,50	154,20	157,80	161,40	164,90	168,30	171,60	28,00
30,00	88,30	95,40		108,20	114,00	119,60	124,90	130,00	134,90	139,60	144,20	148,70	153,00	157,20	161,20	165,20	169,10	172,90	176,60	180,30	183,80	30,00
G.P.H.											l'uscita											G.P.H.
1 mhs	ar = 10	mmC	Δ = 10	Λ Pa																		

1 mbar = 10 mmCA = 100 Pa

1 kW = 860 kcal

Densità gasolio =0,820 / 0,830 PCI = 10150

PCI Potere Calorifico Inferiore

Per scegliere l'ugello è necessario conoscere la pressione di lavoro della pompa (in bar) e la portata di combustibile che si vuole erogare (in kg/h). Nella colonna verticale della pressione pompa utilizzata, si cerca la portata di combustibile richiesta, (scegliere il valore approssimato per difetto). In corrispondenza del valore di portata trovato guardare all'estremità della stessa riga orizzontale, nella colonna "Ugelli", l'Ugello corrispondente in G.P.H.

Esempio

Pressione pompa: 12 bar Portata richiesta: 15 bar

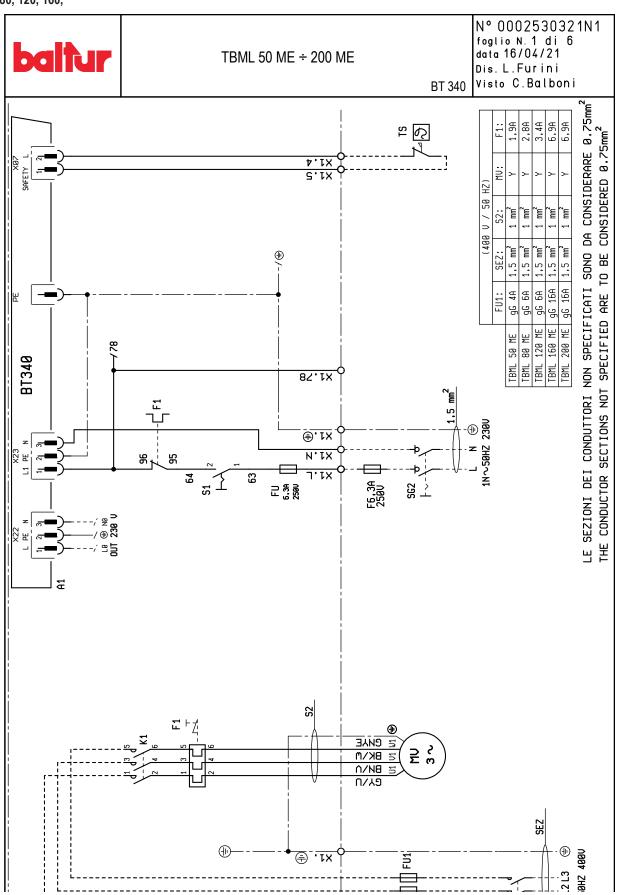
Portata rilevata da diagramma: 14,57 kg/h

Ugello calcolato: 3,50 G.P.H.

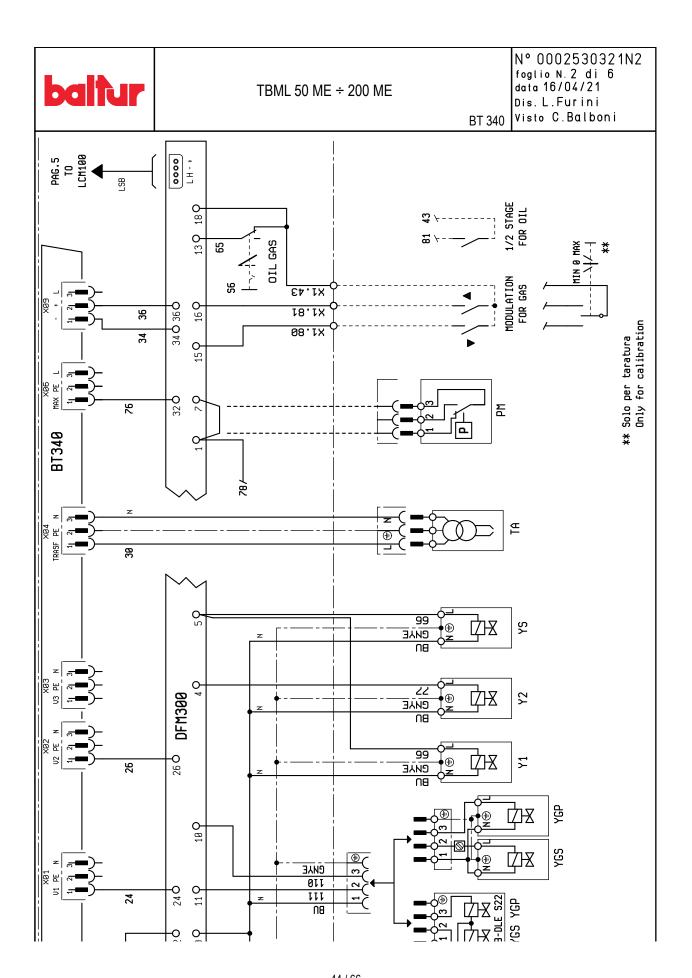
ISTRUZIONI PER L'ACCERTAMENTO DELLE CAUSE DI IRREGOLARITÀ NEL FUNZIONAMENTO E LA LORO ELIMINAZIONE

IRREGOLARITÁ	POSSIBILE CAUSA	RIMEDIO					
Bruciatore che non si avvia.(L'apparecchiatura non effettua il programma di accensione).	 Termostati (caldaia o ambiente) o pressostati, aperti. Fotoresistenza in corto circuito. Mancanza di tensione in linea, interruttore generale aperto, interruttore del contatore scattato o mancanza di tensione in linea. La linea dei termostati non è stata eseguita secondo schema o qualche termostato è rimasto aperto. Guasto interno all'apparecchiatura. 	 Alzare il valore dei termostati oppure attendere che si chiudano i contatti per diminuzione naturale della temperatura o pressione. Sostituirla. Chiudere gli interruttori o attendere il ritorno della tensione. Controllare i collegamenti e i termostati. Sostituirla. 					
Fiamma difettosa con presenza di faville.	 Pressione di polverizzazione troppo bassa. Eccesso di aria comburente. Ugello inefficiente perché sporco o logoro. Presenza di acqua nel combustibile. 	 Ripristinarla al valore previsto. Diminuire l'aria comburente Pulire o sostituire. Scaricare l'acqua dalla cisterna servendosi di una pompa adatta. Non usare mai per questo lavoro la pompa del bruciatore. 					
Fiamma non ben conformata con fumo e fuliggine.	 Insufficienza di aria comburente. Ugello inefficiente perché sporco o logoro. Ugello di portata insufficiente rispetto al volume della camera di combustione. Camera di combustione di forma non adatta o troppo piccola. Rivestimento refrattario non adatto (riduce eccessivamente lo spazio della fiamma). Condotti della caldaia o camino ostruiti. Pressione di polverizzazione bassa. 	 Aumentare l'aria comburente. Pulire oppure sostituire. Diminuire la portata di gasolio in rapporto alla camera (ovviamentela potenza termica esagerata risulterà inferiore a quella necessaria) o sostituire la caldaia. Aumentare la portata dell'ugello sostituendolo. Modificarlo attenendosi alle istruzioni del costruttore della caldaia. Provvedere alla loro pulizia. Riportarla al valore prescritto. 					
Fiamma difettosa, pulsante, o sfuggente dalla bocca di combustione.	 Tiraggio eccessivo, solo in caso di un aspiratore al camino. Ugello inefficiente perché sporco o logoro. Presenza di acqua nel combustibile. Disco fiamma sporco. Eccesso di aria comburente. Passaggio d'aria tra disco fiamma e diffusore eccessivamente chiuso. 	 Adeguare la velocità di aspirazione modificando i diametri delle pulegge. Pulire oppure sostituire. Scaricare l'acqua dalla cisterna servendosi di una pompa adatta. Non usare mai per questo lavoro la pompa del bruciatore. Pulire. Ridurre l'aria comburente. Correggere la posizione del dispositivo di regolazione della testa di combustione. 					

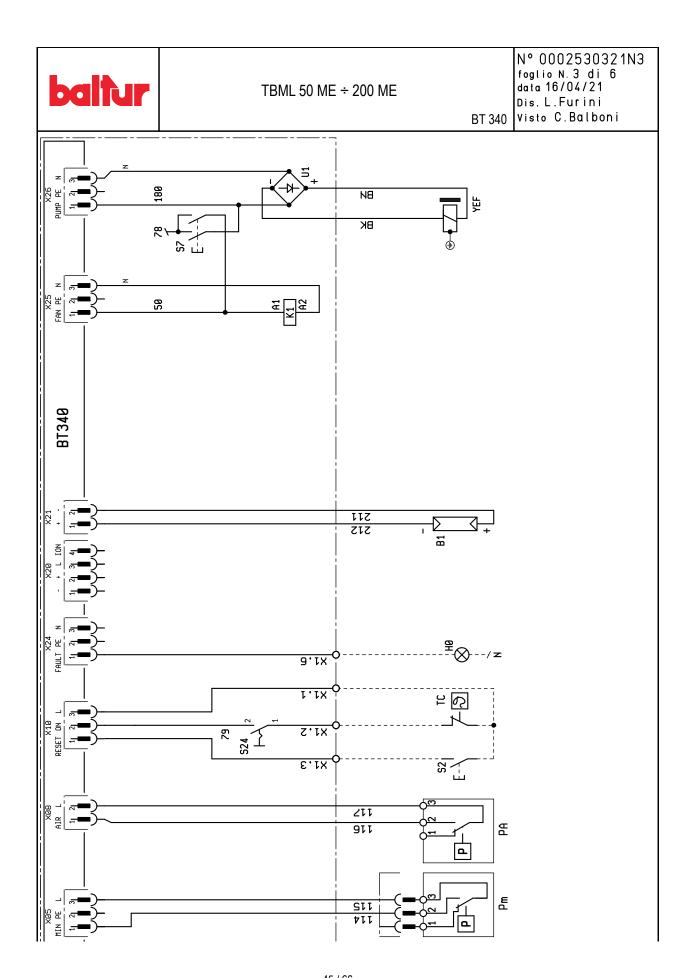
IRREGOLARITÁ	POSSIBILE CAUSA	RIMEDIO					
Corrosioni interne nella caldaia.	 Temperatura di esercizio della caldaia troppo bassa (inferiore al punto di rugiada). Temperatura dei fumi troppo bassa, indicativamente al di sotto dei 130° C per gasolio. 	 Aumentare la temperatura di esercizio. Aumentare la portata di gasolio se la caldaia lo consente. 					
Fuliggine allo sbocco del camino.	Eccessivo raffreddamento dei fumi (indicativamente al di sotto dei 130° C) in canna fumaria, per camino esterno non sufficientemente coibentato, oppure per infiltrazioni di aria fredda.	Migliorare l'isolamento ed eliminare ogni apertura che possa consentire l'ingresso di aria fredda al camino.					
L'apparecchio va in blocco (lampada rossa accesa) il guasto è circoscritto al dispositivo di controllo fiamma.	 Sensore fiamma interrotto o sporco di fumo. Tiraggio insufficiente. Circuito del sensore fiamma interrotto nell'apparecchiatura. Disco fiamma o diffusore sporchi. 	 Pulire o sostituire. Controllare tutti i passaggi dei fumi nella caldaia e nel camino. Sostituire l'apparecchiatura. Pulire. 					
L'apparecchio va in blocco spruzzan- do combustibile liquido senza il veri- ficarsi della fiamma (lampada rossa accesa). Il guasto è circoscritto al dispositivo di accensione, ammesso che il com- bustibile sia non inquinato da acqua o altro e sufficientemente polverizza- to. L'apparecchio va in blocco, il gas esce, ma la fiamma non è presente (lampada rossa accesa). Guasto cir- coscritto al circuito di accensione.	 Interruzione nel circuito di accensione. I cavetti del trasformatore di accensione scaricano a massa. I cavetti del trasformatore di accensione non sono ben collegati. Trasformatore d'accensione guasto. Le punte degli elettrodi non sono alla giusta distanza. Gli elettrodi scaricano a massa perché sporchi o per isolante incrinato; controllare anche i morsetti di fissaggio degli isolantori di porcellana. 	 Verificare tutto il circuito. Sostituire. Ripristinare il collegamento. Sostituire. Riportare nella posizione prescritta. Pulire, se necessario, sostituirli. 					

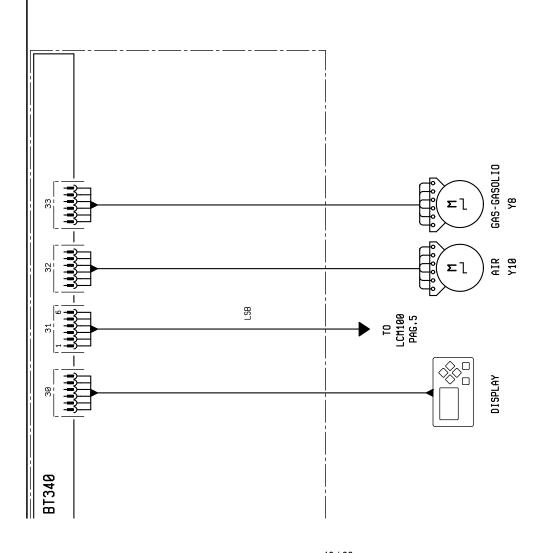


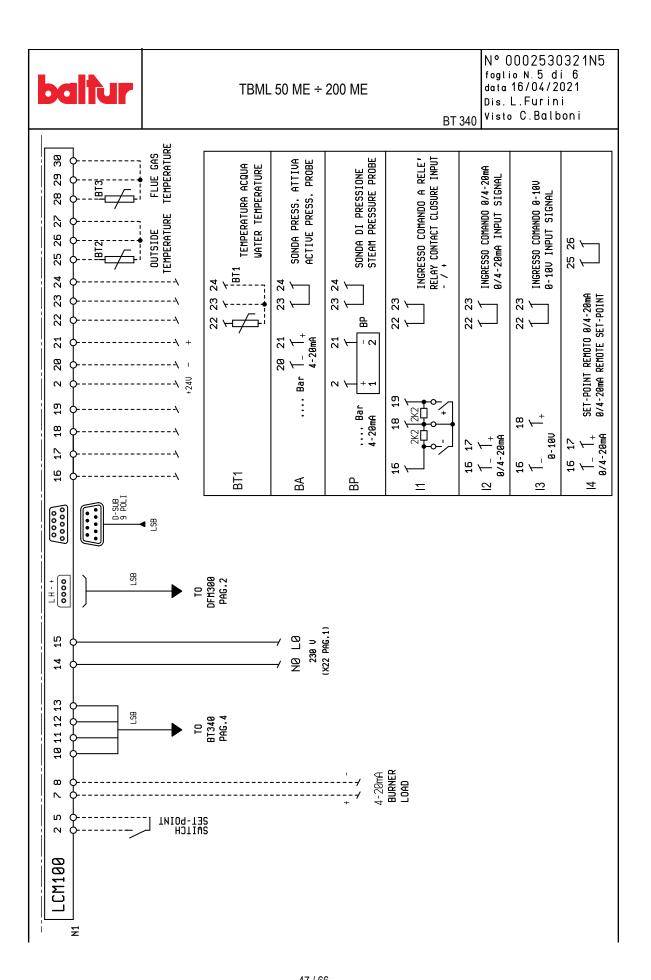
IRREGOLARITÁ	POSSIBILE CAUSA	RIMEDIO					
L'apparecchio va in blocco spruz- zando combustibile liquido senza il verificarsi della fiamma. (Lampada rossa accesa).	 La pressione della pompa non è regolare. Presenza di acqua nel combustibile. Eccesso di aria comburente. Passaggio d'aria tra disco fiamma e diffusore eccessivamente chiuso. Ugello logoro o sporco. 	 Regolare. Scaricare l'acqua dalla cisterna servendosi di una pompa adatta. Non usare mai per questo lavoro la pompa del bruciatore. Diminuire l'aria comburente. Correggere la posizione di regolazione della testa di combustione. Pulire o sostituire. 					
L'apparecchio và in blocco, il gas esce, ma la fiamma non è presente (lampada rossa accesa).	 Rapporto aria - gas non corretto. La tubazione del gas non è stata adeguatamento sfogata dell'aria alla prima accensione. La pressione del gas è insufficiente o eccessiva. Passaggio aria tra disco fiamma e diffusore troppo chiuso. 	 Correggere il rapporto aria - gas. Sfogare ulteriormente con le dovute cautele, la tubazione del gas. Verificare il valore della pressione gas al momento dell'accensione (usare possibilmente un manometro ad acqua). Adeguare l'apertura disco fiamma - diffusore. 					
Pompa del bruciatore rumorosa.	 Tubazione di diametro troppo piccolo. Infiltrazioni d'aria nei tubi. Filtro combustibile sporco. Distanza e/o dislivello negativo o eccessivo fra cisterna e bruciatore, oppure molte perdite accidentali (curve, gomiti, strozzature ecc) Tubi flessibili deteriorati. 	 Sostituirla attenendosi alle relative istruzioni. Verificare ed eliminare tali infiltrazioni. Smontare e lavare. Rettificare l'intero sviluppo del tubo di aspirazione riducendo così la distanza. Sostituire. 					



SCHEMI ELETTRICI


TBML 80, 120, 160,




TBML 50 ME ÷ 200 ME

N° 0002530321N4 foglio N. 4 di 6 data 16/04/21 Dis. L.Furini

BT 340 Visto C.Balboni

A8 APPARECCHIATURA PER DUE COMBUSTIBILI

B1 SENSORE FIAMMA

BT1 SONDA DI TEMPERATURA ACQUABT2 SONDA DI TEMPERATURA ESTERNA

BT3 SONDA DI TEMPERATURA GAS DI SCARICO

BP SONDA DI PRESSIONE

BA SONDA ATTIVA F1 RELE' TERMICO

FU1÷4 FUSIBILI

H0 SPIA BLOCCO ESTERNA / LAMPADA FUNZIONAMENTO RESI-

STENZE AUSILIARIE

H7 LAMPADA BLOCCO RELE' TERMICO MOTORE VENTOLA

K1 CONTATTORE MOTORE VENTOLAI1 INGRESSO A COMANDO A RELÉ

I2 INGRESSO COMANDO 0/4 - 20 mA

INGRESSO COMANDO 0 - 10VSET POINT REMOTO 0/4 - 20 mA

MV MOTORE VENTOLA

N1 "REGOLATORE ELETTRONICO

PA PRESSOSTATO ARIA
Pm PRESSOSTATO DI MINIMA

S1 INTERRUTTORE MARCIA ARRESTO

S6 SELETTORE COMBUSTIBILE

S7 PULSANTE CARICAMENTO SERBATOIO / IMPIANTO

S24 INTERRUTTORE ACCESO / SPENTO

SG INTERRUTTORE GENERALE

TA TRASFORMATORE D'ACCENSIONE

TC TERMOSTATO CALDAIA

TS TERMOSTATO DI SICUREZZA

X1 MORSETTIERA BRUCIATORE

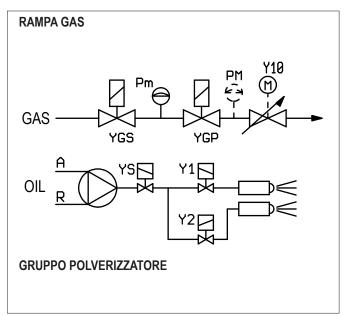
Y1/Y2 ELETTROVALVOLE 1° / 2° STADIO

Y8 SERVOMOTORE GAS

Y10 SERVOMOTORE ARIA

YEF ELETTROFRIZIONE

YGP ELETTROVALVOLA GAS PRINCIPALE


YGS ELETTROVALVOLA GAS SICUREZZA

YS/YS1 ELETTROVALVOLA DI SICUREZZA

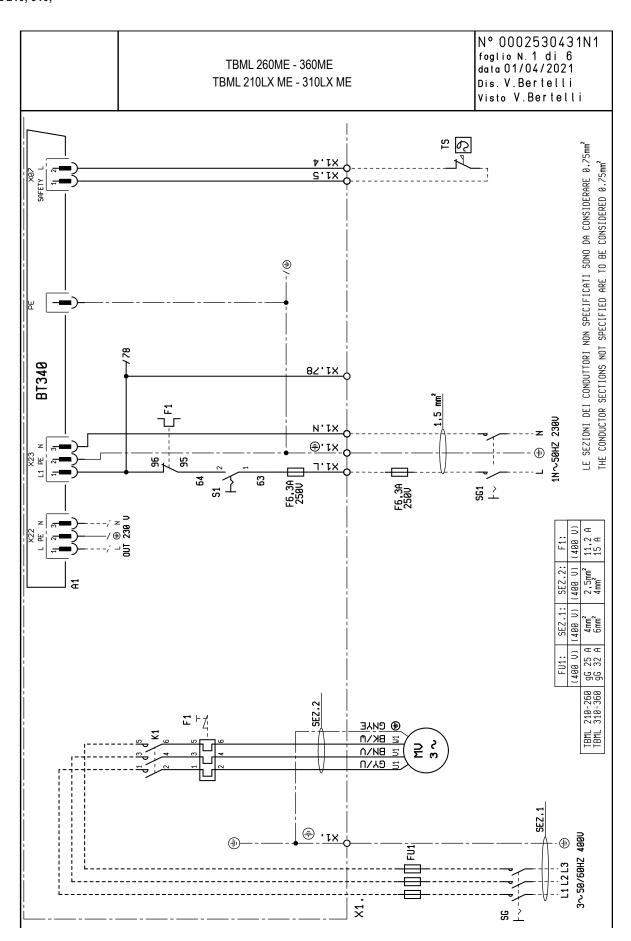
Colore serie fili

GNYE VERDE / GIALLO

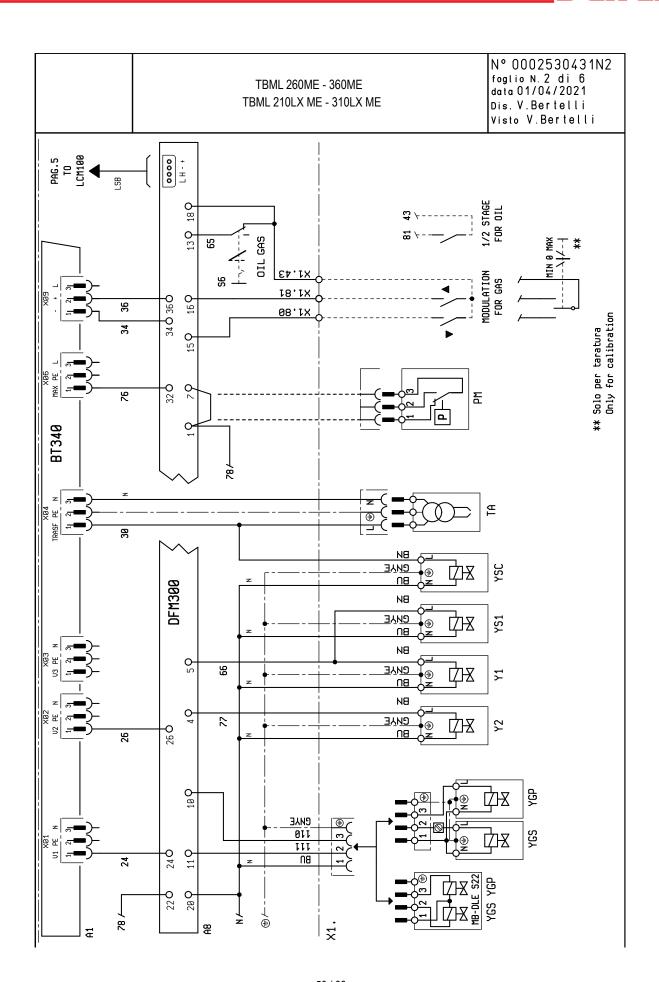
BU BLU BN BRUNO BK NERO

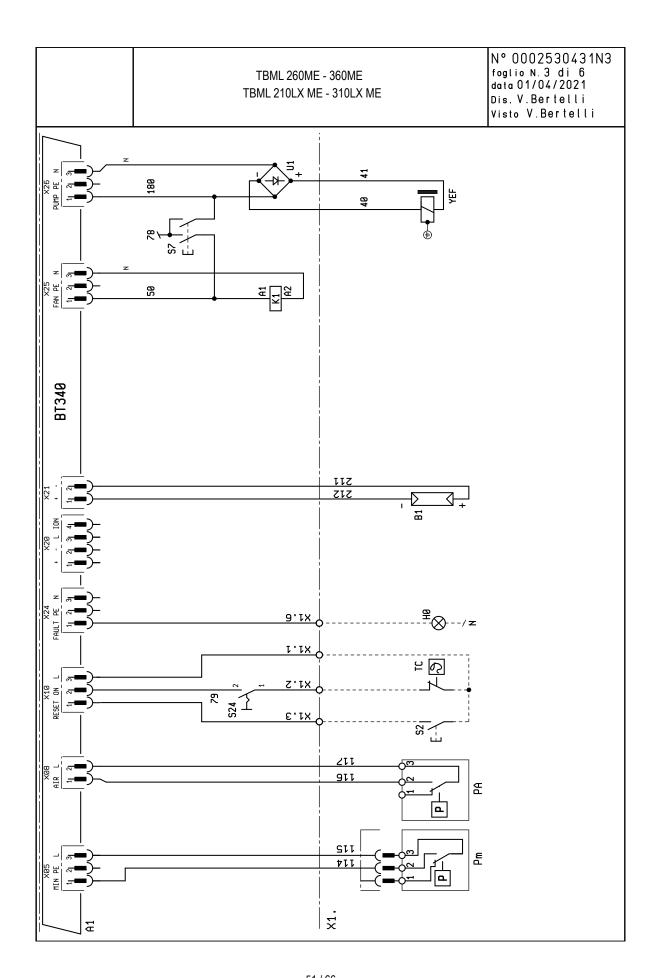
L1 - L2- L3 Fasi

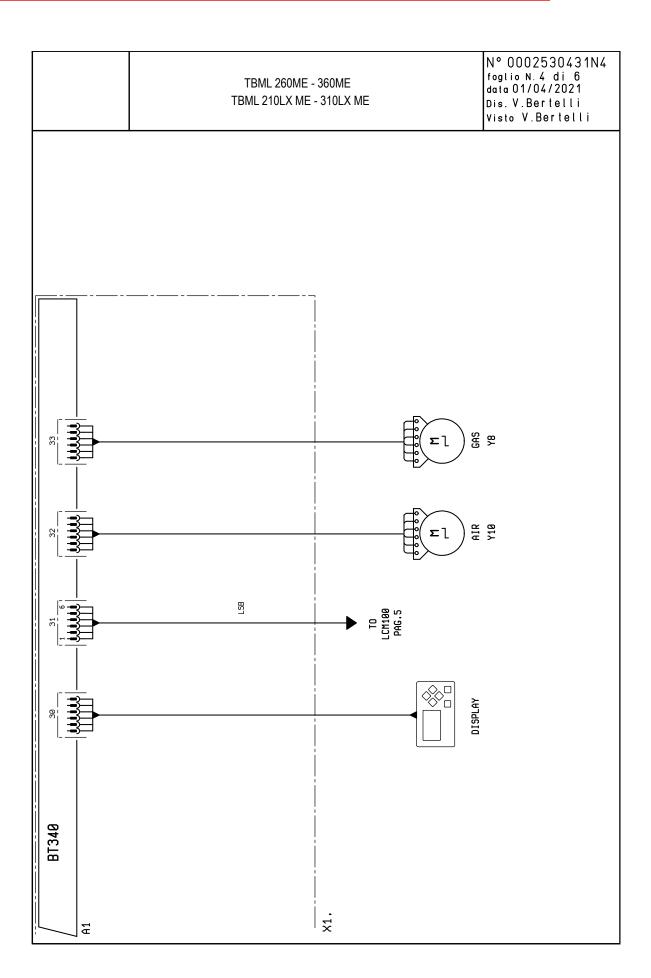
N - Neutro

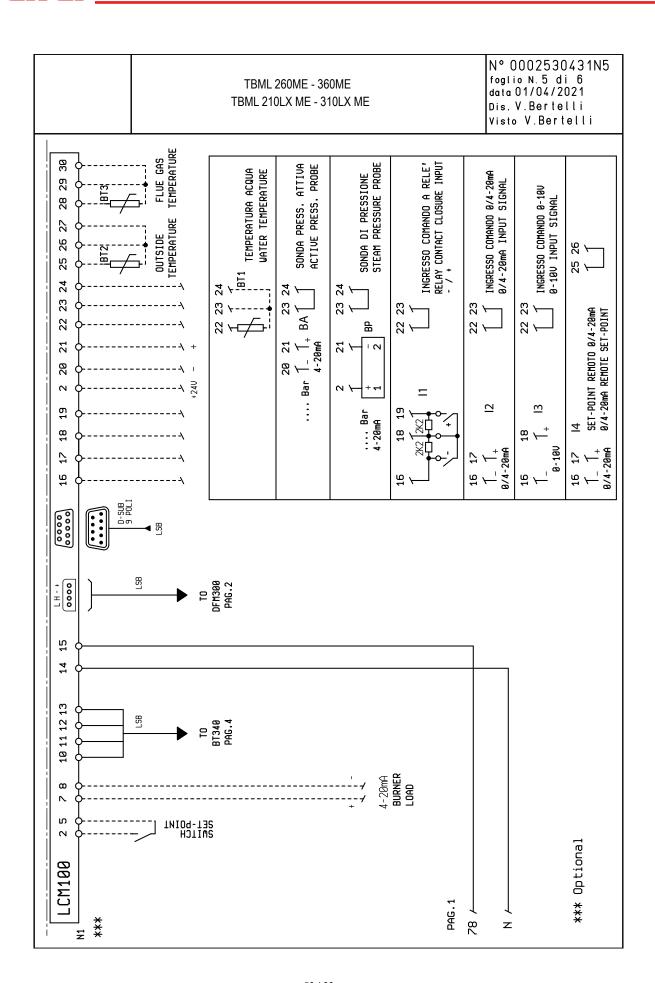


Terra


Corrente minima di rilevazione fiamma 100 µA


TBML 210, 310,





A8 APPARECCHIATURA PER DUE COMBUSTIBILI

B1 SENSORE FIAMMA

BA SONDA ATTIVA

BT1 SONDA DI TEMPERATURA ACQUA

BP SONDA DI PRESSIONE

F1 RELE' TERMICO

FU1÷4 FUSIBILI

HO SPIA BLOCCO ESTERNA / LAMPADA FUNZIONAMENTO RESI-

STENZE AUSILIARIE

11 INGRESSO A COMANDO A RELÉ

12 INGRESSO COMANDO 0/4 - 20 mA

INGRESSO COMANDO 0 - 10V

I4 SET POINT REMOTO 0/4 - 20 mA

K1 CONTATTORE MOTORE VENTOLA

MV MOTORE VENTOLA

N1 "REGOLATORE ELETTRONICO

PA PRESSOSTATO ARIA

P M "PRESSOSTATO DI MASSIMA"

Pm PRESSOSTATO DI MINIMA

S1 INTERRUTTORE MARCIA ARRESTO

S2 PULSANTE SBLOCCO

S6 SELETTORE COMBUSTIBILE

S7 PULSANTE CARICAMENTO SERBATOIO / IMPIANTO

S24 INTERRUTTORE ACCESO / SPENTO

SG1/2 SEZIONATORE GENERALE DI MANOVRA

TA TRASFORMATORE D'ACCENSIONE

TC TERMOSTATO CALDAIA

TS TERMOSTATO DI SICUREZZA

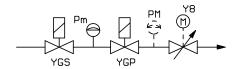
U1 PONTE RADDRIZZATORE

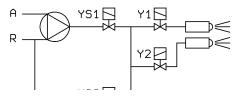
X1 MORSETTIERA BRUCIATORE

Y1/Y2 ELETTROVALVOLE 1° / 2° STADIO

Y8 SERVOMOTORE GAS

Y10 SERVOMOTORE ARIA


YEF ELETTROFRIZIONE


YGP ELETTROVALVOLA GAS PRINCIPALE

YGS ELETTROVALVOLA GAS SICUREZZA

YS/YS1... ELETTROVALVOLA DI SICUREZZA

RAMPA GAS

GRUPPO POLVERIZZATORE

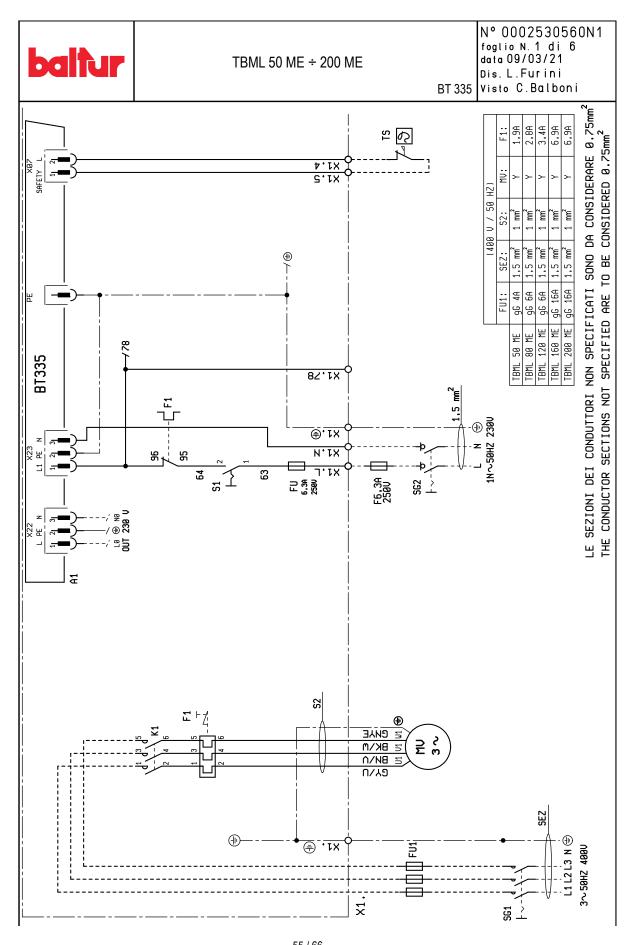
L1 - L2- L3 Fasi

N - Neutro

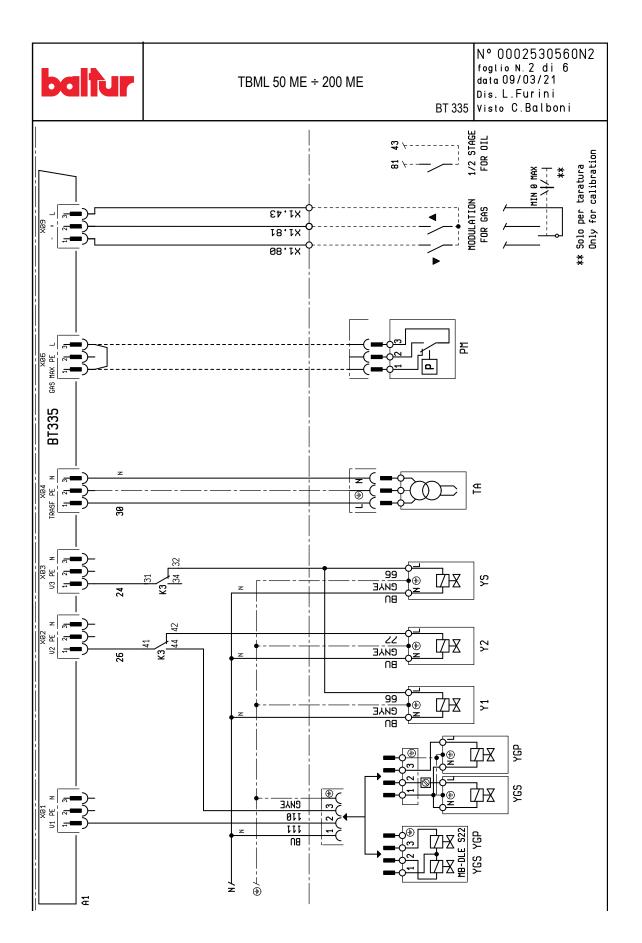
Terra

Colore serie fili

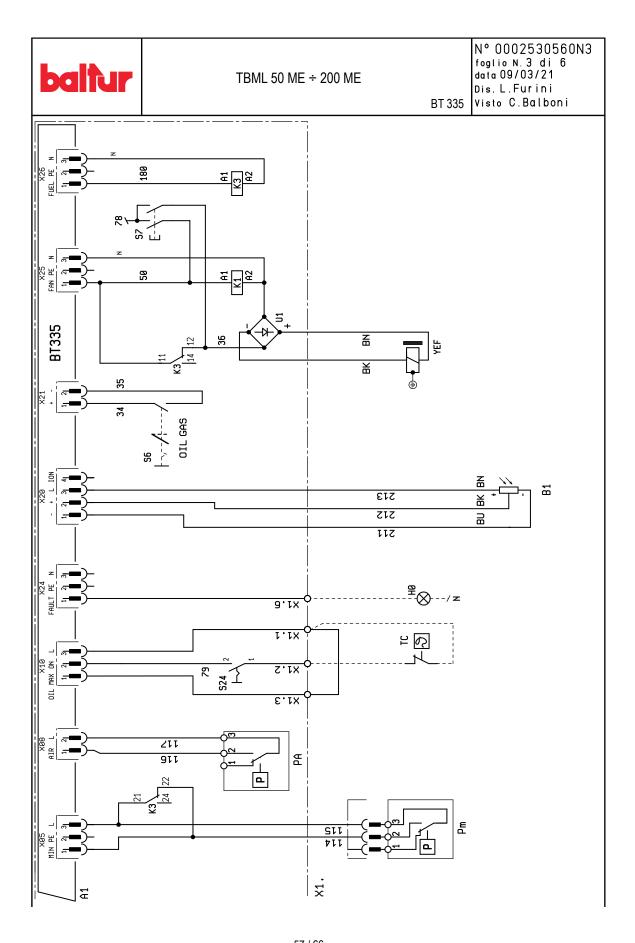
GNYE VERDE / GIALLO

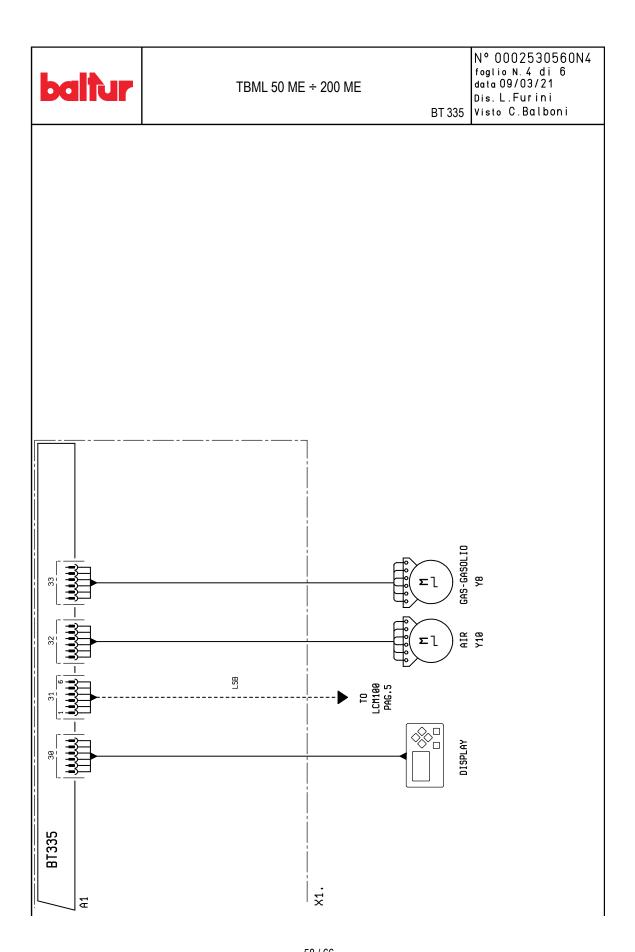

BU BLU

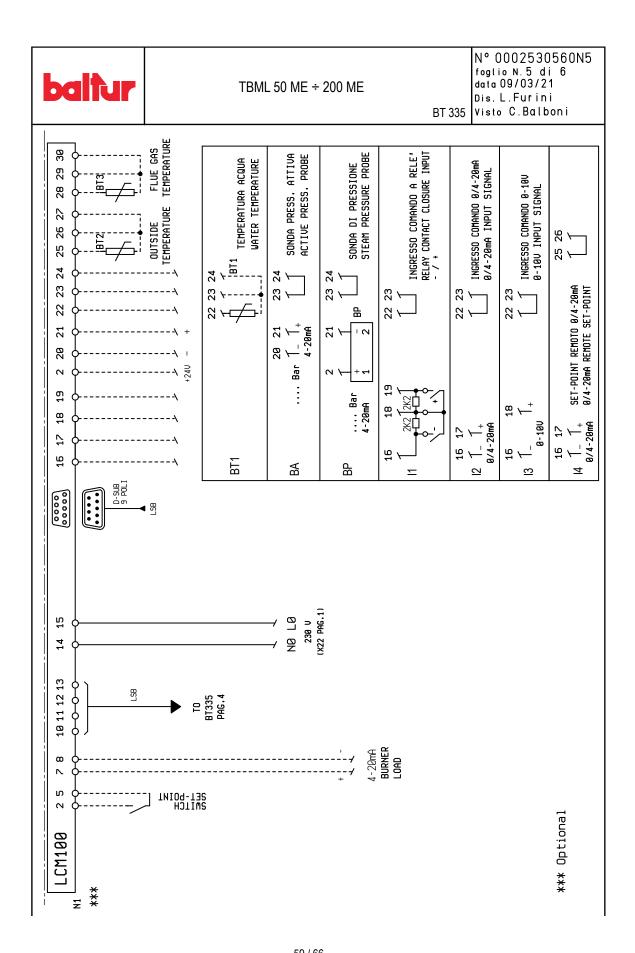
BN BRUNO


BK NERO

BK* CONNETTORE NERO CON SOVRASTAMPA







B1 SENSORE FIAMMA

BT1 SONDA DI TEMPERATURA ACQUA

BT2 SONDA DI TEMPERATURA ESTERNA

BA SONDA ATTIVA F1 RELE' TERMICO

FU1÷4 FUSIBILI

HO SPIA BLOCCO ESTERNA / LAMPADA FUNZIONAMENTO RESI-

STENZE AUSILIARIE

I1 INGRESSO A COMANDO A RELÉ

12 INGRESSO COMANDO 0/4 - 20 mA

I3 INGRESSO COMANDO 0 - 10V

I4 SET POINT REMOTO 0/4 - 20 mA

15 INGRESSO COMANDO REGOLATORE ESTERNO

K1 CONTATTORE MOTORE VENTOLA

K3 "RELÉ AUSILIARIO MOTORINO CICLICO"

MV MOTORE VENTOLA

N1 "REGOLATORE ELETTRONICO

PA PRESSOSTATO ARIA

Pm PRESSOSTATO DI MINIMA

PM PRESSOSTATO DI MASSIMA

S1 INTERRUTTORE MARCIA ARRESTO

S6 SELETTORE COMBUSTIBILE

S7 PULSANTE CARICAMENTO SERBATOIO / IMPIANTO

S24 INTERRUTTORE ACCESO / SPENTO

SG1/2 SEZIONATORE GENERALE DI MANOVRA

TA TRASFORMATORE D'ACCENSIONE

TC TERMOSTATO CALDAIA

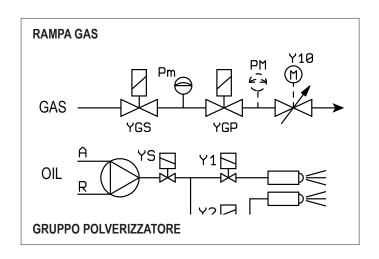
TS TERMOSTATO DI SICUREZZA

U1 PONTE RADDRIZZATORE

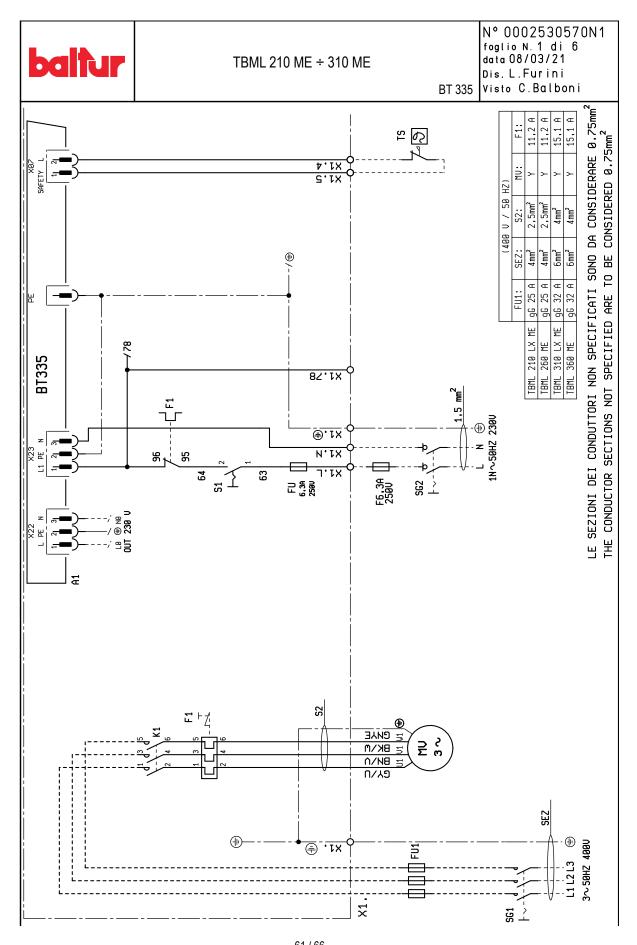
X1 MORSETTIERA BRUCIATORE

Y1/Y2 ELETTROVALVOLE 1° / 2° STADIO

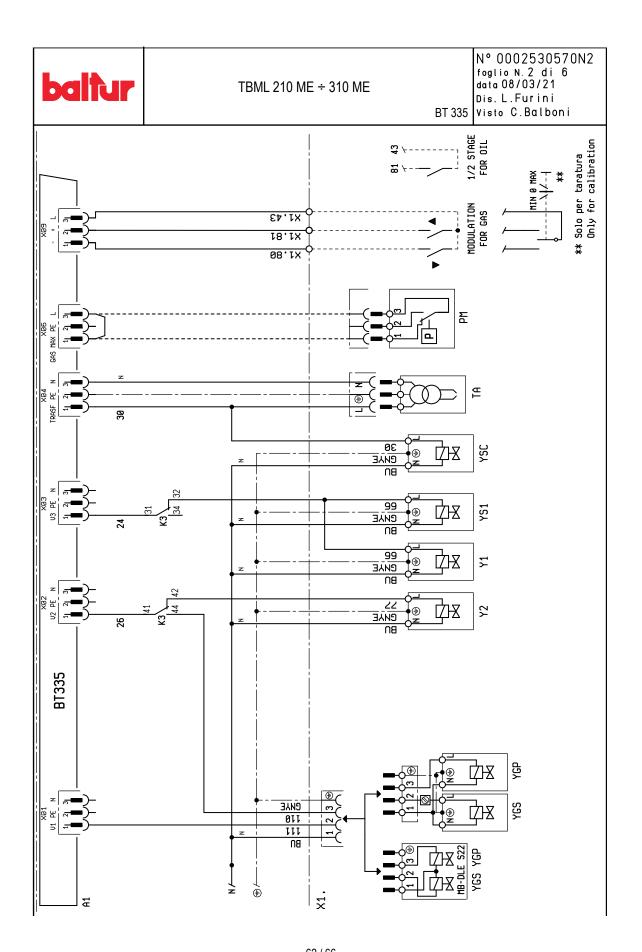
Y8 SERVOMOTORE GAS

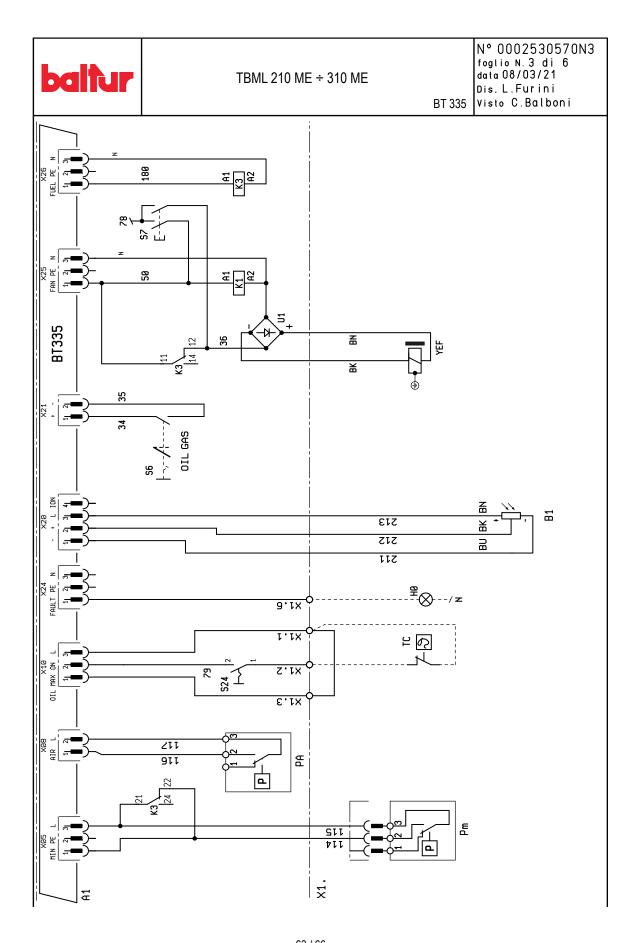

Y10 SERVOMOTORE ARIA

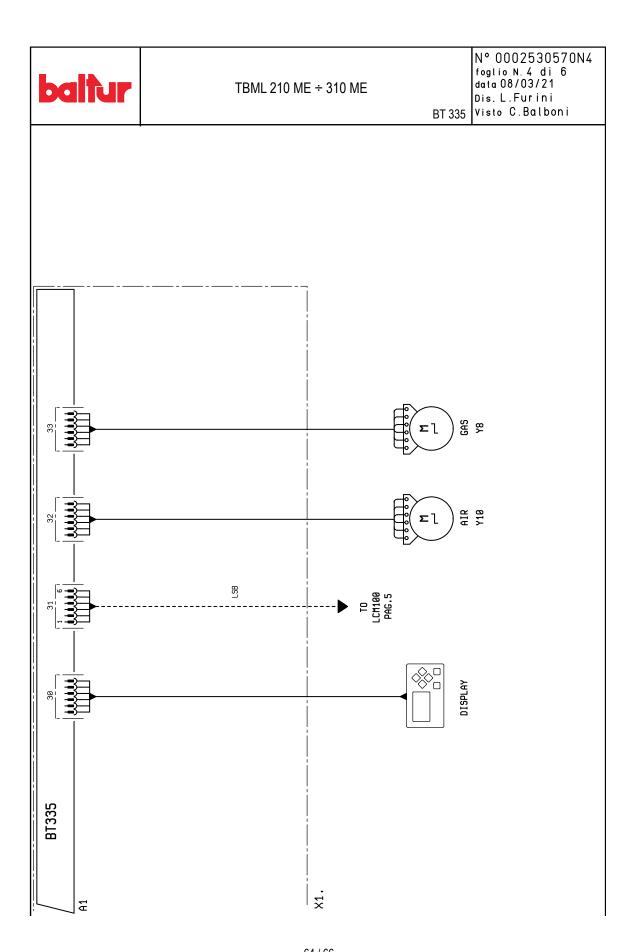
YEF ELETTROFRIZIONE

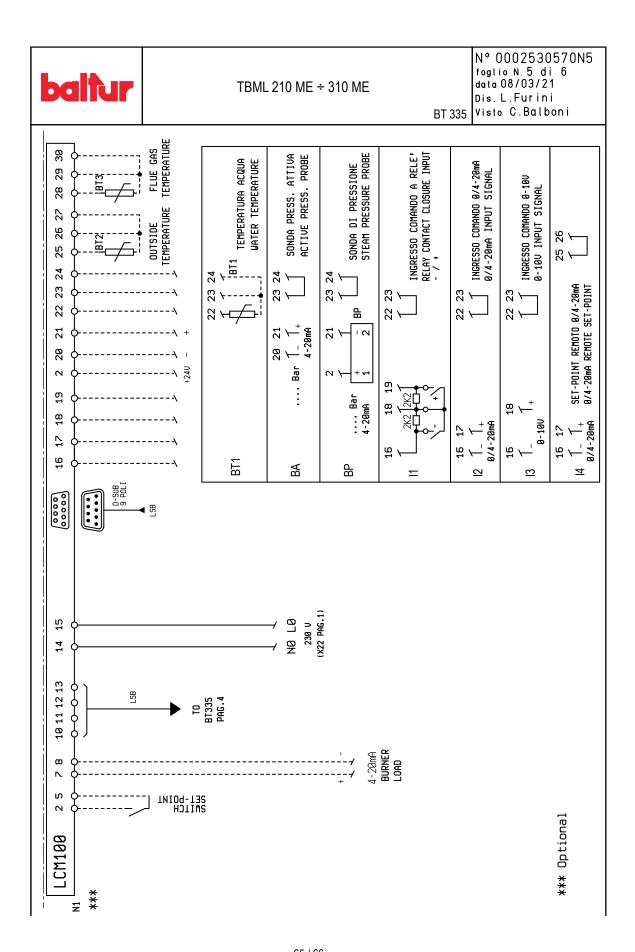

YGP ELETTROVALVOLA GAS PRINCIPALE

YGS ELETTROVALVOLA GAS SICUREZZA


YS/YS1... ELETTROVALVOLA DI SICUREZZA







B1 SENSORE FIAMMA

BT1 SONDA DI TEMPERATURA ACQUA

BT2 SONDA DI TEMPERATURA ESTERNA

BA SONDA ATTIVA F1 RELE' TERMICO

FU1÷4 FUSIBILI

HO SPIA BLOCCO ESTERNA / LAMPADA FUNZIONAMENTO RESI-

STENZE AUSILIARIE

I1 INGRESSO A COMANDO A RELÉ

12 INGRESSO COMANDO 0/4 - 20 mA

13 INGRESSO COMANDO 0 - 10V

I4 SET POINT REMOTO 0/4 - 20 mA

IS INGRESSO COMANDO REGOLATORE ESTERNO

K1 CONTATTORE MOTORE VENTOLA

K3 "RELÉ AUSILIARIO MOTORINO CICLICO"

MV MOTORE VENTOLA

N1 "REGOLATORE ELETTRONICO

PA PRESSOSTATO ARIA

Pm PRESSOSTATO DI MINIMA

PM PRESSOSTATO DI MASSIMA

S1 INTERRUTTORE MARCIA ARRESTO

S2 PULSANTE SBLOCCO

S6 SELETTORE COMBUSTIBILE

S7 PULSANTE CARICAMENTO SERBATOIO / IMPIANTO

S24 INTERRUTTORE ACCESO / SPENTO

SG1/2 SEZIONATORE GENERALE DI MANOVRA

TA TRASFORMATORE D'ACCENSIONE

TC TERMOSTATO CALDAIA

TS TERMOSTATO DI SICUREZZA

U1 PONTE RADDRIZZATORE

X1 MORSETTIERA BRUCIATORE

Y1/Y2 ELETTROVALVOLE 1° / 2° STADIO

Y8 SERVOMOTORE GAS

Y10 SERVOMOTORE ARIA

YEF ELETTROFRIZIONE

YGP ELETTROVALVOLA GAS PRINCIPALE

YGS ELETTROVALVOLA GAS SICUREZZA

YS/YS1... ELETTROVALVOLA DI SICUREZZA

YSC ELETTROVALVOLA DI SCARICO

SUMMARY

Warnings for use in safety conditions	2
Technical specifications	6
Standard accessories	7
Burner identification plate	7
Data recorded during first start-up	7
Overall dimensions	8
Component description	9
Electrical panel	
Operating range	10
Burner connection to the boiler	11
Gas supply line	12
Gas burner block diagram	12
Electrical connections	13
Liquid fuel supply line	15
Auxiliary pump	15
Pipeline size diagram	17
Description of operation with liquid fuel	20
First pipeline filling up	22
Ignition and adjustment with liquid fuel	23
Details of pumps	24
Operation description with gaseous fuel	25
Natural gas ignition and regulation	27
Air regulation on the combustion head	30
Diagram for regulating the combustion head and the electrode disk distance	31
Specifications for propane use	32
Block diagram illustrating the principle of L.P.G. pressure reduction in two stages for burner or boiler	
Maintenance	
maintenance time	
Expected lifespan	
nozzle flow rate table	
Instructions for determining the cause leading to irregularities in the operation and their elimination	
Wiring diagrams	43

WARNINGS FOR USE IN SAFETY **CONDITIONS**

PURPOSE OF THIS MANUAL

This manual is aimed at ensuring the safe use of the product to which it refers, through the indication of the necessary components in order to prevent the original safety features from being jeopardized by improper or erroneous installation and by improper, erroneous or unreasonable use.

The manufacturer accepts no liability for any damage caused by improper installation and use or in case of non-compliance with the manufacturer's instructions.

- The manufactured machines have a minimum life of 10 years, if normal working conditions are met and periodic maintenance specified by the manufacturer is done.
- · The instruction booklet is an integral and essential part of the product and must be given to the user.
- The user must keep the booklet to hand for consultation when needed.
- Before starting to use the equipment, carefully read the "Instructions for use" in this manual and those directly applied to the product in order to minimize risks and accidents.
- Observe the SAFETY WARNINGS, avoid IMPROPER USES.
- Installer must evaluate any RESIDUAL RISK that might arise.
- This manual contains symbols to highlight some parts of the text or to indicate some important specifications. You find their description below.

DANGER / ATTENTION

This symbol indicates a very dangerous situation that, if ignored, can seriously endanger people health and safety.

CAUTION / WARNINGS

This symbol indicates that it is necessary to behave properly to void endangering people's health and safety and causing economical damages.

IMPORTANT

This symbol indicates particularly important technical and operative information that must not be neglected.

CONDITIONS AND DURATION OF STORAGE

The equipment is shipped with the manufacturer package and transported on road, by boat or by train in compliance with the standards on goods transport in force for the actual mean of transport used.

The unused equipment must be placed in closed rooms with enough air circulation in standard temperature conditions -25° C and + 55° C. The storage time is 3 years.

GENERAL WARNINGS

- The burner must be used in boilers for civil applications such as building heating and domestic hot water production.
- The burner must NOT be used in production cycles and industrial processes, the latter governed by the Standard EN 746-2
- · The equipment production date (month, year) is written on the burner identification plate located on the equipment.
- · The equipment cannot be used by people (including children) with reduced physical, sensory or mental capacities or lacking experience or know-how.

- The equipment use is allowed to such people only if they can have access to, through a responsible person, the information concerning their safety, surveillance and instructions concerning equipment use.
- Children must be watched over to prevent them from playing with the equipment.
- This appliance should only be used for the purpose it has been designed for. Any other use is to be considered improper and therefore
- The equipment must be installed in accordance with current regulations, with the manufacturer's instructions and by qualified technicians.
- The term 'qualified personnel' refers to those specifically trained in the field and with proven skills, in accordance with the local law in
- An incorrect installation can cause injury or damage to persons, animals and objects, for which the manufacturer cannot be held responsible.
- After removing all the packaging make sure the contents are complete and intact. If in doubt, do not use the equipment and contact your supplier. The packing pieces are potentially dangerous and must be kept away from children.
- The majority of the equipment components and its package is made with reusable materials. The package, the equipment and its components cannot be disposed of with the standard waste but according to the regulations in force.
- Before carrying out any cleaning or maintenance, disconnect the equipment at the mains supply, using the system's switch and/or shut-off systems.

- If the equipment is sold or transferred to another owner or if the owner moves and leaves the equipment, make sure that the booklet always goes with the equipment so it can be consulted by the new owner and/or installer.
- When the equipment is working, do not touch hot parts that are usually positioned near the flame and the fuel pre-heating system, if any. They could still be hot after the equipment is turned off for a short period of time.
- If there is any fault or if the equipment is not working properly, de-activate the equipment and do not attempt to repair it or tamper with it directly. Contact only qualified personnel.
- Any product repairs must only be carried out by BALTUR authorised assistance centres or by its local distributor using only original spare parts.
- The manufacturer and/or its local distributor are not liable for any accident or damage caused by unauthorised changes of the product and by failure to follow the rules described in the manual.

SAFETY WARNINGS FOR INSTALLATION

- The equipment must be installed in a well-ventilated suitable room in compliance with the laws and regulations in force.
- Ventilation grille section and installation room aeration openings must not be obstructed or reduced.
- The installation room must NOT have the risk of explosion and/or fire
- Before installing the equipment we recommend to carefully clean the interior area of all fuel supply system pipes.
- Before connecting the equipment check that the details on the plate correspond to those of the utility supplies (electricity, gas, light oil or other fuel).
- Make sure the burner is firmly fixed to heat generator according to manufacturer instructions.
- Connect to the source of energy according to state-of-the-art standards as described in the explanatory diagrams and in compliance with the regulatory and law requirements in force at the moment of installation.
- · Check that the fume disposal system is NOT obstructed.
- If it is decided not to use the burner any more, the following procedures must be performed by qualified technicians:
 - Switch off the electrical supply by disconnecting the power cable from the main switch.
 - Cut off the fuel supply using the shut-off valve and remove the control wheels from their position.
 - Render harmless any potentially dangerous parts.

WARNINGS FOR START UP, TEST, USE AND MAINTENANCE

- Start up, test and maintenance of the equipment must only be carried out by qualified technicians, in compliance with current regulations.
- Once the burner is fixed to the heat generator, make sure that the generated flame does not come out of any slot during testing.
- · Check equipment fuel supply pipe seal.
- Check that fuel flow rate equals the power required to the burner.
- Set the burner fuel capacity to the power required by the heat generator.
- Fuel supply pressure must be within the values indicated on the plate on the burner and/or manual
- The fuel supply system is suitably sized for the flow required by the burner and that it has all the safety and control devices required by current standards.
- · Before starting up the burner, and at least once a year, have quali-

fied technicians perform the following operations:

- Set the burner fuel capacity to the power required by the heat generator.
- Check combustion and adjust combustion and/or fuel air flow to optimize combustion and reduce emissions in accordance with the law in force
- Check the adjustment and safety devices are working properly.
- Check the efficiency of the combustion products exhaust duct.
- Check seal in the fuel supply pipe internal and external section.
- At the end of the adjustment procedures, check that all the locking devices of mechanical securing systems are properly tightened.
- Make sure that the use and maintenance manual of the burner is available.
- If the burner repeatedly stops in lock-out, do not keep trying to manually reset it but call a qualified technician.
- If you decide not to use the burner for a while, close the valve or valves that supply the fuel.

SPECIAL PRECAUTIONS WHEN USING GAS.

- Check that the feed line and the train comply with current law and regulations.
- · Check that all the gas connections are properly sealed.
- Do not leave the equipment on when it is not in use and always close the gas cock.
- If the user is absent for a prolonged period of time, close the main gas feed tap to the burner.
- · If you smell gas:
 - do not operate electrical switches, phones or any other object that may cause sparks;
 - open immediately doors and windows to create a draught to clear the air in the room;
 - close the gas cocks;
 - have professionally qualified personnel correct the fault.
- Do not obstruct ventilation openings in the room where there is gas equipment. Otherwise, dangerous situations may arise with the build up of toxic and explosive mixtures.

RESIDUAL RISKS

Even though the product was designed in compliance with the obligatory standards, residual risks may still be present during correct operation. They are signalled on the burner through special Pictograms.

CAUTION

Moving mechanical organs.

CAUTION

Materials at high temperature.

CAUTION

Powered electric panel.

PERSONAL PROTECTIVE EQUIPMENT

· While working on the burner, use the following safety devices.

ELECTRIC SAFETY WARNINGS

- Check that the equipment has a suitable ground system, carried out following safety standards in force.
- Have qualified personnel check that the electric system is adequate to equipment maximum power consumption indicated on the plate.
- For the mains supply connection is required an omnipolar switch with a contact opening gap equal or above 3 mm in accordance with current safety regulations (condition of overvoltage category III).
- Remove the external insulating seal of the supply pipe necessary for the connection, preventing the cable to touch metal parts.
- The use of any electrically fed components entails complying with certain fundamental rules, including the following:
 - do not touch the equipment with parts of the body that are wet or damp or with damp feet;
 - do not pull on electrical cables;
 - do not leave the equipment exposed to atmospheric agents (such as rain or sun etc.) unless there is explicit provision for this;
 - do not allow the equipment to be used by children or inexpert persons;
 - The power supply cable for the equipment must not be replaced by the user. In case of cable damage, turn the equipment off. To

- replace it contact qualified personnel only;
- If you decide not to use the equipment for a certain period of time it is advisable to switch off the electrical power supply to all components in the system that use electricity (pumps, burner, etc.).
- Use regulation-compliant flexible cables EN 60204-1
 - in case of PVC sheath, at least type H05VV-F;
- in case of rubber sheath, at least type H05RR-F; LiYCY 450/750V
- without any sheath, at least type FG7 o FROR, FG70H2R
- The electric equipment works correctly when the relative humidity does not exceed the 50% at a maximum temperature of +40° C.
 Higher relative humidity are allowed at lower temperatures (e.g. 90 % at 20° C)
- The electric equipment works correctly at altitudes of up to 1000 m above the see level.

IMPORTANT

We hereby declare that our gas, liquid and mixed forced draught burners respect the minimum requirements of the European Directives and Regulations and are compliant with European standards.

A copy of the EC declaration of conformity is supplied with the burner.

TO BE CARRIED OUT BY THE INSTALLER

- Install a suitable disconnecting switch for each burner supply line.
- The disconnection must be carried out by means of a device complying with the following requirements:
 - A disconnecting switch circuit breaker, according to IEC 60947-3 for at least the equipment category AC-23 B (non-frequent operations on highly inductive loads or AC motors).
 - A control and protection switching device suitable for isolation according to IEC 60947-6-2.
 - A switch suitable for isolation according to IEC 60947-2.
- · The disconnecting device must:
 - Ensure the isolation of the electrical equipment from the power supply line when in the stable OFF position indicated with "0", and be in a stable ON position indicated with "1".
 - Feature a visible gap between contacts or a position indicator that cannot indicate OFF (isolated) until all contacts are actually open and the requirements for the isolation function are met.
 - Feature a grey or black actuator which can be easily identified.
 - Be padlockable in the OFF position. In case of lock-out, remote and local activation will not be possible.
 - Disconnect all the active conductors of its power supply circuit.
 For TN power supply systems, the neutral conductor can be disconnected or not, except in the countries where the disconnection of the neutral conductor (if used) is mandatory.
- Both disconnecting controls must be located at a height between 0,6 m ÷ 1, 7 m with respect to the working plane.
- Since circuit breakers are not emergency devices, they can feature
 an additional cover or a door, which can be easily opened without
 any key or tool. Its function must be clearly indicated, e.g. with the
 relevant symbols.
- The burner can be installed only in TN or TT systems. It cannot be installed in isolated system of IT type.
- Do not reduce the section of the conductors. A maximum short-circuit current of 10kA is required at the connection point (before protection devices) in order to ensure the correct intervention of protection devices.
- The automatic reset function on the thermal device which protects the fan motor cannot be enabled (by irreversibly removing the relevant plastic label) for any reason.
- As for the connection of cables to the terminals of the electrical equipment, make sure that the earth conductor length is such as to ensure that it is not subject in any way to accidental disconnection following any mechanical stress.
- Provide for a suitable emergency stop circuit able to perform a simultaneous stop in category 0 both on 230Vac single-phase line and on 400Vac three-phase line. The disconnection of both power supply lines ensures a "safe" transition in the shortest time possible.
- The emergency stop will have to be performed complying with the following requirements:
 - The electrical emergency stop device must fulfil the "special requirements for control switches with direct opening" (refer to EN 60947-5-1: 2016, Attachment K).
 - It is recommended that the emergency stop device is red and the surface behind it is yellow.
 - The emergency action must be of the hold-to-run type and require a manual operation to be restored.
 - When the emergency device is restored, the burner must not be able to start autonomously, but a further "run" action by the operator must be required.

- The emergency activation device must be clearly visible and easily reachable and actionable in the immediate vicinity of the burner. It must not be enclosed within protection systems or behind doors that can be opened with keys or tools.
- In the case that the burner is positioned in such a way that it cannot be easily reached, activated and serviced, provide for a suitable service plane in order to ensure that the control panel is positioned between 0.4 ÷ 2.0 metres with respect to the service plane. This is to ensure an easy access by the operator for maintenance and adjustment operations.
- When installing the input power and control cables of the burner electrical equipment, remove the protection plugs and provide for suitable cable glands so that an "IP" protection degree equal to or higher than that indicated on the burner nameplate can be ensured.

TECHNICAL SPECIFICATIONS

MODEL		TBML 80 ME	TBML 120 ME	TBML 160 ME	TBML 210 LX ME	TBML 310 LX ME
Maximum natural gas thermal power	kW	850	1200	1600	2100	3200
Minimum natural gas thermal power	kW	180	250	350	350	500
¹) natural gas emissions	mg/kWh	Class 3	Class 3	Class 3	Class 3	Class 3
Natural gas operation		Electronic modu-	Electronic modu-	Electronic modu-	Electronic modu-	Electronic modu-
		lation	lation	lation	lation	lation
Maximum natural gas thermal rate	Stm³/h	90	127	169,3	222,2	338,7
Minimum natural gas thermal rate	Stm³/h	19	26,4	37	47,6	74,1
Natural gas minimum pressure	hPa (mbar)	28,3	18,6	39,4	57	90
Natural gas maximum pressure	hPa (mbar)	360	360	360	500	500
Maximum propane thermal power	kW	850	1200	1600	2100	3200
Minimum propane thermal power	kW	190	250	350	450	700
Maximum propane thermal rate	Stm³/h	34,7	49	65,4	85,9	130,9
Minimum propane thermal rate	Stm³/h	7,7	10,2	14,3	18,4	28,7
Propane minimum pressure	hPa (mbar)	41	23,1	41,8	53	100
Propane maximum pressure	hPa (mbar)	360	360	500	360	360
²) propane emissions	mg/kWh	Class 3	Class 3	Class 3	Class 3	Class 3
Maximum diesel fuel thermal rate	kg/h	71,6	101,2	134,9	177	270
Minimum diesel fuel thermal rate	kg/h	29,5	37,9	46,4	37,9	59
Maximum diesel fuel thermal power	kW	850	1200	1600	2100	3200
Minimum diesel fuel thermal power	kW	350	450	550	450	950
3) diesel emissions	mg/kWh	Class 2	Class 2	Class 2	Class 2	Class 2
Diagol vigogoity		5.5 cst / 20°C -	5.5 cst / 20°C -			
Diesel viscosity		1.5°E / 20°C	1.5°E / 20°C	1.5°E / 20°C	1.5°E / 20°C	1.5°E / 20°C
Diesel operation		Two-stage	Two-stage	Two-stage	Two-stage	Two-stage
50hz fan motor	kW	1.1	1.5	3	5.5	7.5
50 hz ignition transformer		26 kV - 48 mA -	26 kV - 48 mA -			
30 Hz Igrillion transformer		230 V	230 V	230 V	230 V	230 V
50Hz three-phase electrical data		3L - 400V - 2,5A - 1,35kW	3L - 400V - 3,1A - 1,76kW	3L - 400V - 6,3A - 3,49kW	3L - 400V - 10,2A - 6,14kW	3L - 400V - 13,7A - 8,36kW
50Hz single-phase electrical data		1N - 230V - 0,82A - 0,189kW	1N - 230V - 0,84A - 0,193kW	1N - 230V - 0,84A - 0,193kW	1N - 230V - 1,05A - 0,241kW	1N - 230V - 1,05A - 0,241kW
Protection rating		IP40	IP40	IP40	IP40	IP40
Control box		BT 340 / 335	BT 340 / 335			
Flame detection		UV photocell	UV photocell	UV photocell	UV photocell	UV photocell
operating ambient air temperature	°C	-15 ÷ +40	-15 ÷ +40	-15 ÷ +40	-15 ÷ +40	-15 ÷ +40
Sound pressure**	dBA	76	78	83	81	84
Sound power***	dBA	85	87	92	94	97
Weight with packaging	kg	88	97	105	125	160

Propane / natural gas CO emissions ≤ 100 mg/kWh

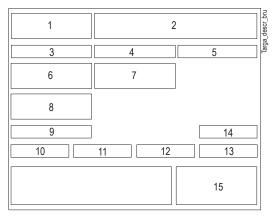
Calorific power below reference conditions 15° C, 1013 hPa (mbar):

Natural gas: Hi = 9,45 kWh/Stm³ = 34,02 MJ/Stm³ Diesel fuel: Hi = 11.86 kWh/kg = 42.70 Mj/kg Propane: Hi = 24,44 kWh/Stm³ = 88,00 MJ/Stm³

For different types of gases and pressure values, contact our sales departments.

Minimum gas pressure, depending on the type of gas train used for obtaining max. flow rate with null pressure in the combustion chamber.

^{**} The acoustic pressure measured with burner operating at maximum rated thermal output refers to the manufacturer's laboratory environment conditions and cannot be compared to measurements carried out in different locations. Measurement accuracy $\sigma = +/-1.5$ dB(A).


^{***} Acoustic pressure was obtained characterizing the manufacturer's laboratory with a sample source; this measurement has a class 2 accuracy (engineering class) with a standard deviation of 1.5 dB(A).

STANDARD ACCESSORIES

MODEL	TBML 80 ME	TBML 120 ME	TBML 160 ME	TBML 210 LX ME	TBML 310 LX ME
Burner coupling flange gasket	1	1	1	1	1
Stud bolts	N°4 - M12	N°4 - M12	N°4 - M12	N°4 - M12	N°4 - M12
Hexagon nuts	N°4 - M12	N°4 - M12	N°4 - M12	N°4 - M12	N°4 - M12
Flat washers	No. 4 - Ø12	No. 4 - Ø12			
Insulating cord	1	1	1	1	1
Hoses	N.2 - 1/2"x3/8"	N.2 - 1/2"x1/2"	N.2 - 1/2"x1/2"	No.2 - 3/4"x3/4"	No.2 - 3/4"x3/4"
Filter	3/8"	3/8"	3/8"	1"	1"
Nipple/s	N.2 - 1/2"x3/8"	N.2 - 1/2"x3/8"	N.2 - 1/2"x3/8"	No.2 - 3/4"x1"	No.2 - 3/4"x1"

BURNER IDENTIFICATION PLATE

- 1 Company logo
- 2 Company name
 - Product code
- 3 4 Burner model
- Serial number
- 5
- 6 Liquid fuel power
- 7 Gaseous fuel power
- 8 Gaseous fuel pressure
- 9 Liquid fuel viscosity
- 10 Fan motor power
- 11 Power supply voltage
- 12 Protection rating
- 13 Country of origin and numbers of certificate of approval
- 14 Manufacturing date - month / year
- 15 Bar code serial number of burner

DATA RECORDED DURING FIRST START-UP

Model:	Date:		Time:
Type of gas			
Lower Wobbe index			
Lower calorific power			
Min. gas flow rate		Stm³/h	
Max. gas flow rate		Stm³/h	
Min. gas power		kW	
Max. gas power		kW	
System gas pressure		hPa (mbar)	
Gas pressure downstream from stabilizer		hPa (mbar)	
CO (at minimum power)		ppm	
CO2 (at minimum power)		%	
Nox (at minimum power)		ppm	
CO (at maximum power)		ppm	
CO2 (at maximum power)		%	
Nox (at maximum power)	·	ppm	
smoke temperature			
air temperature			

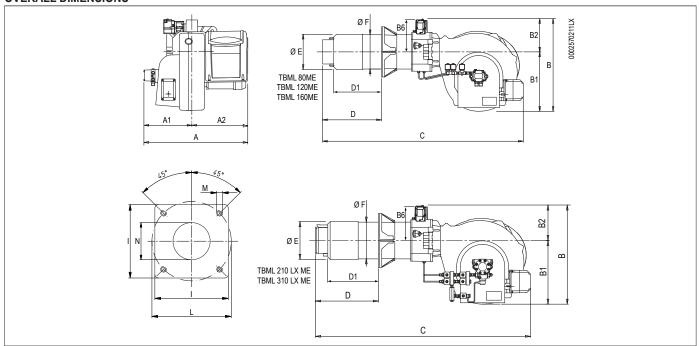
1) NATURAL GAS EMISSIONS

Classes defined according to EN 676 standards.

Class	NOx emissions in mg/kWh natural gas
1	≤ 170
2	≤ 120
3	≤ 80
4	≤ 60

3) DIESEL EMISSIONS

Classes defined according to EN 267 standards.


Class	NOx emissions in mg/kWh diesel	CO emissions in mg/kWh diesel		
Class	fuel	fuel		
1	≤ 250	≤ 110		
2	≤ 185	≤ 110		
3	≤ 120	≤ 60		

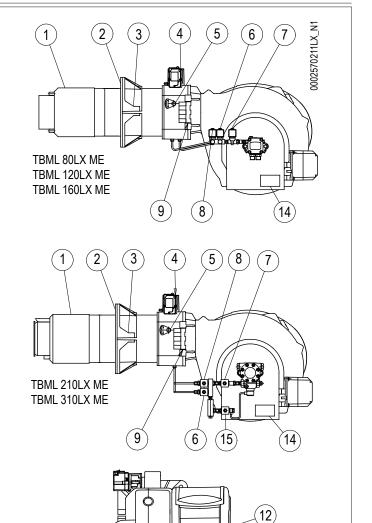
²) PROPANE GAS EMISSIONS

Propane / natural gas CO emissions ≤ 100 mg/kWh

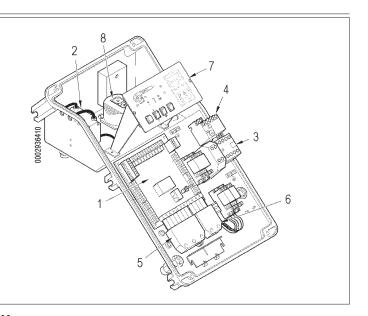
Class	NOx emissions in mg/kWh propane gas
1	≤ 230
2	≤ 180
3	≤ 140
4	≤ 110

OVERALL DIMENSIONS

Model	Α	A1	A2	В	B1	B2	В6	С
TBML 80 ME	700	330	370	580	380	200	200	1250
TBML 120 ME	700	330	370	580	380	200	200	1250
TBML 160 ME	700	330	370	580	380	200	200	1250
TBML 210 LX ME	770	350	420	600	400	200	200	1300
TBML 310 LX ME	880	465	415	600	400	200	200	1330


Model	D	D1	ØΕ	ØF	1
TBML 80 ME	270 ÷ 440	180 ÷ 350	180	178	280
TBML 120 ME	285 ÷ 450	170 ÷ 335	224	219	320
TBML 160 ME	285 ÷ 450	160 ÷ 325	224	219	320
TBML 210 LX ME	285 ÷ 450	160 ÷ 325	224	219	320
TBML 310 LX ME	230 ÷ 440	221 ÷ 431	250	219	320

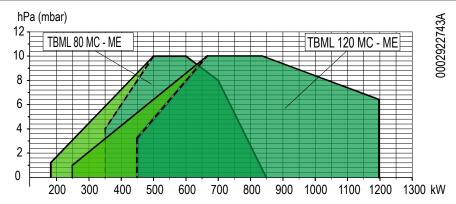
Model	ØL	ØM	ØN
TBML 80 ME	250 ÷ 325	M12	190
TBML 120 ME	280 ÷ 370	M12	235
TBML 160 ME	280 ÷ 370	M12	235
TBML 210 LX ME	280 ÷ 370	M12	235
TBML 310 LX ME	310 ÷ 370	M12	255

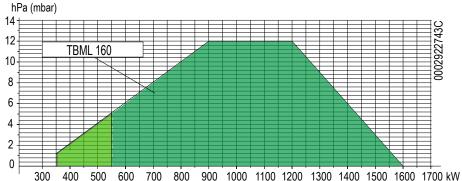

COMPONENT DESCRIPTION

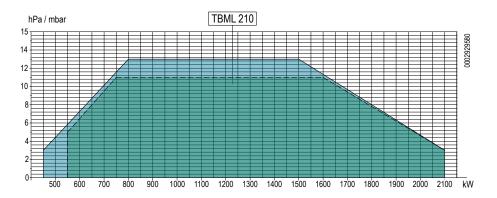
- 1 Combustion head
- 2 Seal
- 3 Burner connection flange
- 4 Gas train connector flange
- 5 Combustion head adjustment device
- 6 2nd stage solenoid valve
- 7 Safety solenoid valve
- 8 1st stage solenoid valve
- 9 Hinge
- 10 Air/gas regulation servomotor
- 11 Burner pump
- 12 Electrical panel
- 13 Motor
- 14 Burner identification plate
- 15 By-pass solenoid valve

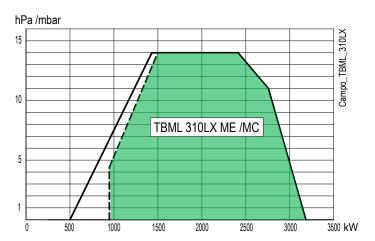
ELECTRICAL PANEL

- 1 Control box
- 2 Ignition transformer
- 3 Motor contactor
- 4 Thermal relay
- 5 7-pole connector
- 6 4-pole connector
- 7 Synoptic panel
- 8 Air pressure switch




(13)


(11)



OPERATING RANGE

IMPORTANT

Min thermal power TBML 80 LPG = 190kW

IMPORTANT

The working fields are obtained from test boilers corresponding to the standard EN267 for liquid fuels and EN676 for gas fuels and are indicative for the combination burner-boiler. For correct working of the burner, the size of the combustion chamber must correspond to current regulations; if not the manufacturers must be consulted.

The burner shall not operate outside its specific operating range.

- - - - Minimum power adjustable with diesel.

DANGER / ATTENTION

During the ignition and adjustment phase, check that the maximum and minimum outputs at which the burner is adjusted are within the working range in order to avoid damage to the system.

BURNER CONNECTION TO THE BOILER

For burner handling, use certified chains or ropes suitable for the burner weight using the anchoring points (21).

HEAD UNIT ASSEMBLY

- Adjust the position of the coupling flange (19) by loosening the screws (6) so that the burner head enters the furnace to the extent recommended by the generator manufacturer.
- Position the insulating gasket (13) on the sleeve, by inserting the cord (2) between the flange and the gasket.
- Fasten the head unit to the boiler(1) by means of the stud bolts, washers and the nuts provided (7).

DANGER / ATTENTION

Seal the space between the burner sleeve and the hold on the refractory material inside the boiler door completely with suitable material.

ASSEMBLING THE GAS TRAIN

There are different ways of assembling the valve train, as shown in drawing 0002937060.

Choose the most rational position for the set-up of the boiler room and the position in which the gas pipeline arrives.

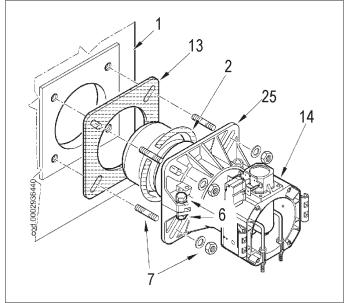
DANGER / ATTENTION

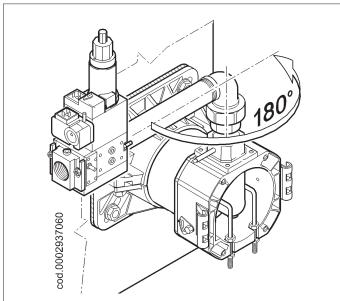
In case of very large valves, e.g. DN65 or DN80, make sure there is a suitable support to prevent excessive stress on the gas train fitting.

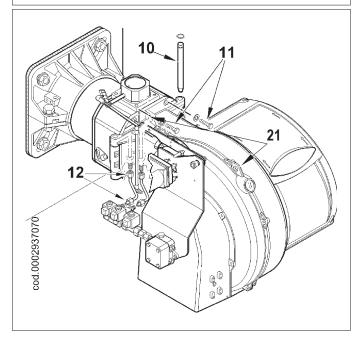
ASSEMBLY OF VENTILATION SYSTEM

Position the half-hinge on the burner scroll in line with those on the combustion head assembly.

- Insert the hinge pin (10) in the position considered most suitable
- Connect the cables (switch on and ionisation) to the corresponding electrodes, close the hinge, locking the burner by means of screws (11).


COMPLETING BURNER SETUP

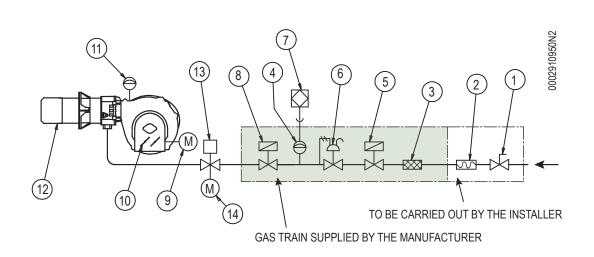

- Remove the protective (yellow) caps from the fittings placed beneath the head unit and near the solenoid valves.
- Connect the light oil pipes (24) provided with the burner to their corresponding connectors, making sure they are properly sealed.


Use the specific chains or ropes connected to the respective eyebolts and slots (21) of the burner.

ACOUSTIC SHROUD

If it is necessary to reduce the sound pressure level, install a suitable acoustic shroud. (see technical price list and contact the dealer)).

GAS SUPPLY LINE

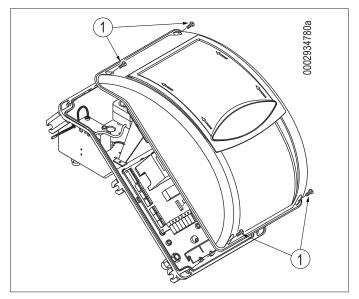

The figure below shows the gas supply line block diagram. The gas train is certified in compliance with EN 676 Standard and supplied separately from the burner.

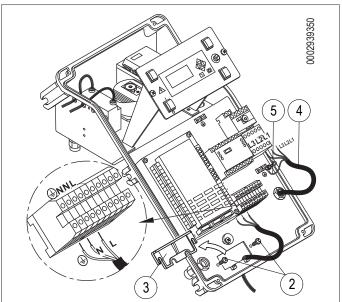
DANGER / ATTENTION

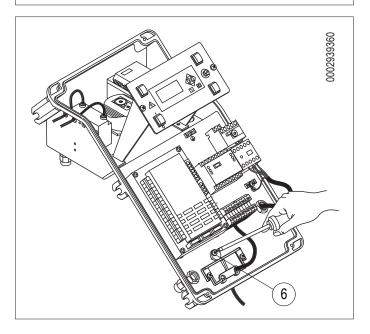
Install a manual shut-off valve and a vibration-proof joint upstream of the gas valve, according to the layout shown in the block diagram.

GAS BURNER BLOCK DIAGRAM

- 1 Manual shut-off valve
- 2 Vibration-proof joint
- 3 Gas filter
- 4 Minimum gas pressure switch and for controlling gas leaks
- 5 Safety valve
- 6 Pressure regulator
- Valve seal control device (mandatory for burners with maximum rated heating capacity higher than 1200kW)
- 8 Working valve
- 9 Air regulation servomotor
- 10 Air regulation damper
- 11 Air pressure switch
- 12 Combustion head
- 13 Gas throttle valve
- 14 Gas regulation servomotor




ELECTRICAL CONNECTIONS


- The power lines must be distanced from the hot parts.
- The burner installation is allowed only in environments with pollution degree 2 as indicated in annex M of the EN 60335-1:2008-07 regulation.
- Make sure that the power line to which the unit will be connected, has frequency and voltage values suitable for the burner.
- The three-phase or single-phase power supply line must have a switch with fuses. The standards also require a switch on the burner's power line located outside the boiler room where it can be accessed easily.
- The main line, the relevant switch with fuses and the possible limiter must be suitable to support the maximum current absorbed by the burner.
- For the mains supply connection is required an omnipolar switch with a contact opening gap equal or above 3 mm in accordance with current safety regulations.
- Refer to the wiring diagram for electrical connections (line and thermostats).
- Remove the external insulating seal of the supply pipe necessary for the connection, preventing the cable to touch metal parts.

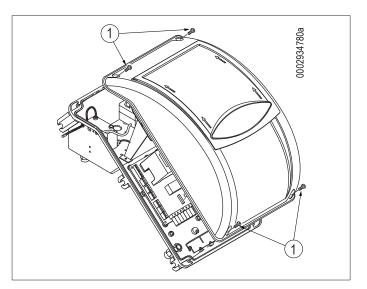
To carry out the connection of the burner to the power supply line proceed as follows:

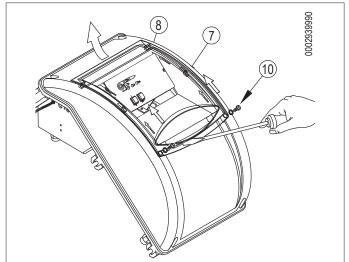
- Remove the cover by unscrewing the screws (1), without removing the transparent door. In this way the burner's electrical panel can be accessed.
- Loosen the screws (2) and after removing the cable clamp plate (3), make the 7 pole plug, the 4 pole plug and the modulation control cable come through the hole. Connect the power supply cables (4) to the contactor, secure the ground cable (5) and tighten the relating cable gland.
- Reposition the cable clamp plate. Turn the cam (6) so that the plate
 exerts sufficient pressure on the cables, then tighten the screws that
 fasten the plate. Finally, connect the related plugs and modulation
 command cable, if installed.

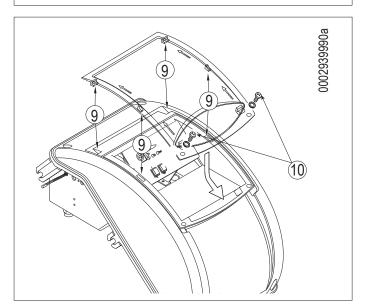
CAUTION / WARNINGS

The housings for the cables for the plugs are provided respectively for cable Ø 9.5÷10 mm and Ø 8.5÷9 mm, this ensures the protection rating is IP 54 (Standard IEC EN60529) for the electrical panel.

• To reclose the electrical panel lid, fix the screws (1) with a torque of about 5 Nm to ensure the correct seal.


To gain access to the control panel (8), slide the transparent door (7) for a short distance following the direction on the arrow indicated in the figure exerting slight pressure with a tool (e.g. a screwdriver) following the arrows' direction and slide it for a short distance to separate it from the cover.


• To secure the transparent door on the panel properly, position the hooks at their hooking points (9), slide the door in the direction indicated by the arrow and tighten the screws again (10).



CAUTION / WARNINGS

Only professionally qualified personnel may open the burner electrical switchboard.

LIQUID FUEL SUPPLY LINE

The following description covers the basic requirements to ensure efficient operation.

The unit is equipped with a self-priming pump capable of sucking oil directly from the tank also for the first fill-up. This statement is valid only if the necessary conditions exist, see the pipe dimensioning diagrams. To ensure an efficient operation, it is better to make suction and return pipes with welded fittings and to avoid the use of threaded connections which often cause air infiltration's interfering with the pump operation and consequently with the burner.

Where a removable fitting is required, use the welded flange method with a fuel resistant gasket inserted to ensure a perfect sealing. For systems requiring pipes with a relatively small diameter, we recommend using copper pipes.

For unavoidable connections we recommend using "biconic" fittings. The basic diagrams for the different system types depending on the position of the tank with respect to the burner are shown below. The intake pipe should run up-slope towards the burner to avoid the possible build-up of gas bubbles. Where more than one burner is installed in one boiler room, it is essential that each burner has its own intake pipe. Only return pipes can lead to a single manifold pipe with an adequate cross section leading to the tank. Avoid at all costs connecting directly the return pipe on the intake pipe.

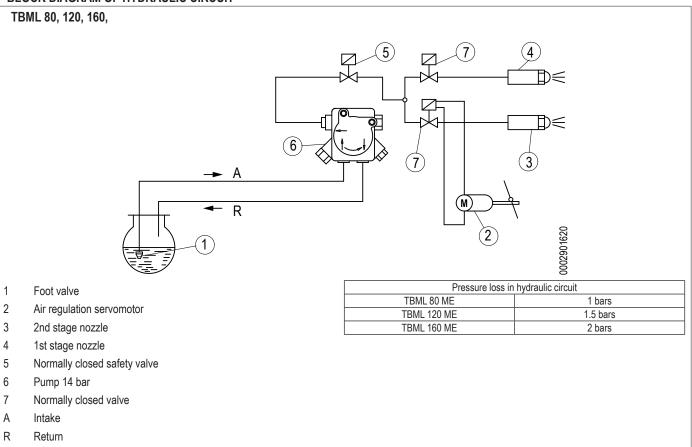
It is advisable to properly insulate the intake and return pipes to prevent cooling which would affect the unit's efficiency. Pipe diameters (to be strictly complied with) are listed in the following tables.

The maximum amount of vacuum that the pump can withstand noise-lessly under normal operating conditions is 0.47 bar; if these limit is exceeded normal pump operation will no longer be guaranteed.

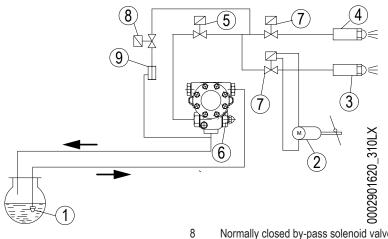
Maximum suction and return pressure = 1 bar.

AUXILIARY PUMP

In some cases (excessive distance or differences in level) the system must be implemented with a "loop" supply circuit with an auxiliary pump, avoiding to connect the burner pump directly to the tank.


In this case, the auxiliary pump can be started when the burner starts and stopped when it stops.

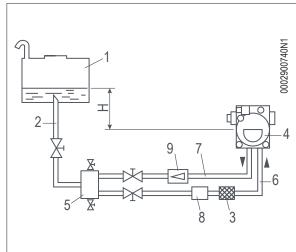
Always follow the instructions below:


- The auxiliary pump must be installed as close as possible to the liquid to be sucked.
- The head must be suitable for the relative plant.
- We recommend a flow rate equal at least to that of the burner pump.
- The connection pipes must be dimensioned based on the flow rate of the auxiliary pump.
- Avoid electrically connecting the auxiliary pump directly to the remote control switch of the burner.
- Adjust the pressure at approx. 0.5 1 bar, if the circuit is equipped with a pressure regulator.

BLOCK DIAGRAM OF HYDRAULIC CIRCUIT

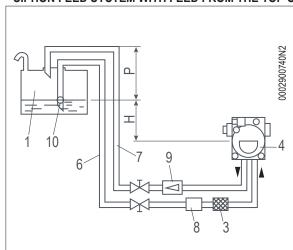
- 1 Foot valve
- 2 Air regulation servomotor
- 3 2nd stage nozzle
- 4 1st stage nozzle
- 5 Normally closed safety valve
- 6 Pump
- 7 Normally closed valve
- 8 Normally closed by-pass solenoid valve
- 9 By-pass adjusting solenoid valve
- Α Intake
- R Return

- Normally closed by-pass solenoid valve
- By-pass adjusting solenoid valve


Pressure loss in hydraulic circuit				
TBML 210 LX ME 4 bars				
TBML 310 LX ME	4 bars			

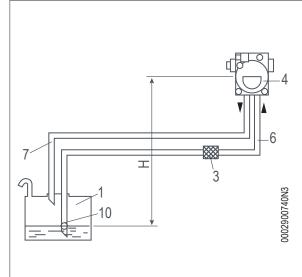
PIPELINE SIZE DIAGRAM

TBML 80 ..


GRAVITY SUPPLY SYSTEM

- 1 Serbatoio
- 2 Feeding pipe
- 3 Mesh filter
- 4 Pompa
- 5 Degasificatore
- 6 Suction pipe
- 7 Burner return pipe
- 8 Automatic shut-off device with burner
- 9 Unidirectional valve

Н	Total L.
	Meters
Meters	Øi 14 mm
1	30
1,5	35
2	35
2,5	40
3	40


SIPHON FEED SYSTEM WITH FEED FROM THE TOP OF THE TANK

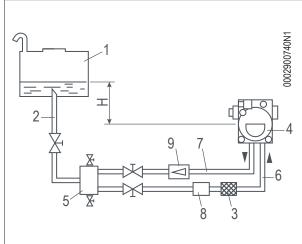
- 1 Serbatoio
- 3 Mesh filter
- 4 Pompa
- 6 Suction pipe
- 7 Return pipe
- 8 Automatic shut-off device with burner off
- 9 Unidirectional valve
- 10 Foot valve

H	Total L.
	Meters
Meters	Øi 14 mm
1	30
1,5	35
2	35
2,5	40
3	40
Value P = 3.5 m (Max)	

INTAKE SUPPLY SYSTEM

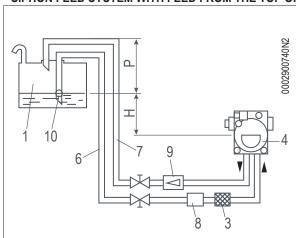
- 1 Serbatoio
- 3 Mesh filter
- 4 Pompa
- 6 Suction pipe
- 7 Return pipe
- 10 Foot valve

Н	Total L.		
Meters	Meters		
ivieters	Øi 14 mm	Øi 16 mm	
0,5	26	45	
1	22	38	
1,5	19	31	
2	14	25	
2,5	11	19	


N.B. Comply with the regulations in force for any components missing in the pipelines.

H = Difference in level between minimum level in tank and pump axis

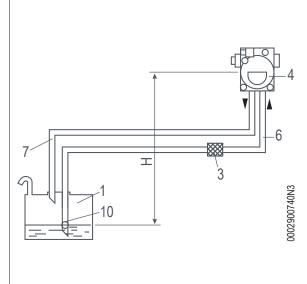
L = Deduct 0.25 m for each elbow or gate.


TBML 120, 160, GRAVITY SUPPLY SYSTEM

- 1 Serbatoio
- 2 Feeding pipe
- 3 Mesh filter
- 4 Pompa
- 5 Degasificatore
- 6 Suction pipe
- 7 Burner return pipe
- 8 Automatic shut-off device with burner off
- 9 Unidirectional valve

Н	Total L.
	Meters
Meters	Øi 16 mm
1	40
1,5	45
2	45
2,5	50
3	50

SIPHON FEED SYSTEM WITH FEED FROM THE TOP OF THE TANK



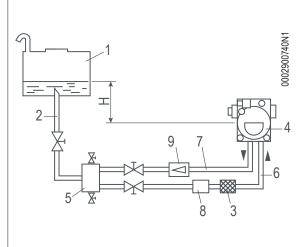
- 1 Serbatoio
- 3 Mesh filter
- 4 Pompa
- 6 Suction pipe
- 7 Return pipe
- 8 Automatic shut-off device with burner off
- 9 Unidirectional valve
- 10 Foot valve

Н	Total L.
	Meters
Meters	Øi 16 mm
1	40
1,5	45
2	45
2,5	50
3	50

Value P = 3.5 m (Max)

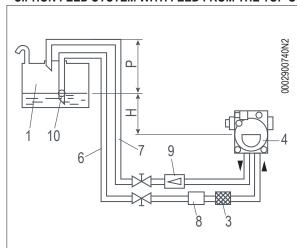
INTAKE SUPPLY SYSTEM

- 1 Serbatoio
- 3 Mesh filter
- 4 Pompa
- 6 Suction pipe
- 7 Return pipe
- 10 Foot valve


Н	Total L.		
Meters	Meters		
ivieters	Øi 14 mm	Øi 16 mm	
0,5	36 55		
1	30	48	
1,5	25	41	
2	20	32	
2,5	15	24	
3	10 15		
3,5	4 7,5		

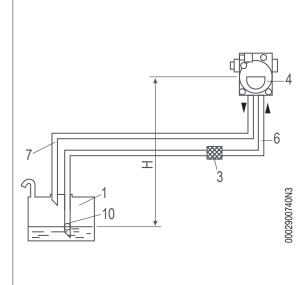
- $\ensuremath{\mathsf{N.B.}}$ Comply with the regulations in force for any components missing in the pipelines.
- H = Difference in level between minimum level in tank and pump axis
- L = Deduct 0.25 m for each elbow or gate.

TBML 210, 310,


GRAVITY SUPPLY SYSTEM

- 1 Serbatoio
- 2 Feeding pipe
- 3 Mesh filter
- 4 Pompa
- 5 Degasificatore
- 6 Suction pipe
- 7 Burner return pipe
- 8 Automatic shut-off device with burner off
- 9 Unidirectional valve

Н	Total L.
	Meters
Meters	Øi 16 mm
1	30
1,5	35
2	35
2,5	40
3	40


SIPHON FEED SYSTEM WITH FEED FROM THE TOP OF THE TANK

- 1 Serbatoio
- 3 Mesh filter
- 4 Pompa
- 6 Suction pipe
- 7 Return pipe
- 8 Automatic shut-off device with burner off
- 9 Unidirectional valve
- 10 Foot valve

Н	Total L.
	Meters
Meters	Øi 16 mm
1	30
1,5	35
2	35
2,5	40
3	40
Dimension = 3.5 m (Max)	•

INTAKE SUPPLY SYSTEM

- 1 Serbatoio
- 3 Mesh filter
- 4 Pompa
- 6 Suction pipe
- 7 Return pipe
- 10 Foot valve

Н	Total L.		
Mataua	Meters		
Meters	Øi. 16 mm	Øi. 18 mm	
0,5	21	34	
1	18	29	
1,5	15	24	
2	11,5	19	
2,5	8,5	14	
3	5,5	9	
3,5	-	3,5	

- N.B. Comply with the regulations in force for any components missing in the pipelines.
- H = Difference in level between minimum level in tank and pump axis
- L = Deduct 0.25 m for each elbow or gate.

DESCRIPTION OF OPERATION WITH LIQUID FUEL

FURTHER INSTRUCTIONS TO START A MIXED BURNER

It is not advisable to have too large a burner for the boiler for heating and for hot water as the burner may work for long periods with a single flame, making the boiler work at lower than required output; as a result of this the combustion products (fumes) emerge at too low a temperature (at about 180°C in the case of heavy oil and 130°C with diesel fuel), causing soot to build up at the chimney outlet.

IMPORTANT

When the boiler is working at lower output than that indicated by the technicians, it is likely that acidic condensate and soot will form in the boiler with the result that it will quickly corrode and get clogged up.

When the two-flame burner is installed on a water boiler for heating use, it must be connected so that it works normally with both flames, completely stopping without passing to the first flame when the preset temperature is reached.

To obtain this operating condition, do not install the second flame thermostat and make a direct connection (bridge) between the respective four pole plug terminals.

In this way, only the burner's capacity will be used for ignition at a reduced flow rate for a soft start, which is an essential condition for boilers with a pressurized combustion chamber, but also very useful for normal boilers (vacuum combustion chamber). The burner's command (on or off) is connected to the normal operating and safety thermostats. The motor turns the fan that carries out an air wash of the combustion chamber and, at the same time, the fuel pump that causes circulation in the ducts, expelling any gas bubbles through the return valve. This pre-washing phase ends with the opening of the operating solenoid valves that makes it possible for the fuel to reach the nozzle and enter the combustion chamber finely atomised.

As soon as the atomized fuel exits the nozzle, it is set on fire by the spark present between the electrodes since the start of the motor.

If the flame appears regularly, after the safety time foreseen by the equipment, it starts the air regulation servomotor that moves to the 2nd stage position. During the transition from the first to the second stage, the equipment activates the solenoid valve (normally closed) of the second stage.

The opening of the second stage valve allows the diesel to reach the second nozzle and the burner to operate at full capacity.

From the time the flame appears in the combustion chamber, the burner is controlled by the photoelectric cell and thermostats.

The control equipment follows the program and switches the ignition transformer off. When the temperature or the pressure in the boiler reaches that set by the thermostat or pressure switch, the latter stops the burner.

Subsequently, if the temperature of pressure decreases below the lower thermostat or pressure switch threshold value, the burner will switch on again.

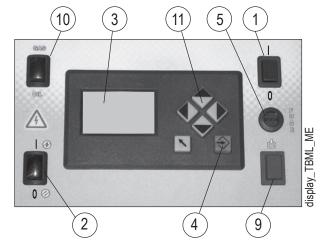
If, for any reason, the flame is lost during burner operation, after just one second the flame control device cuts off the power supply from the relay, switching off the solenoid valves which intercept the fuel flow to nozzles.

The equipment will shut-down automatically.

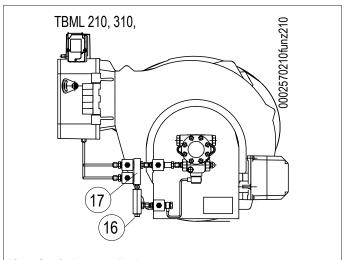
If the program is interrupted (due to a power supply failure, manual action or the intervention of the thermostat, etc.) during the pre-wash stage, the programmer returns to its starting position and will automatically repeat the whole of the burner ignition sequence.

CAUTION / WARNINGS

The selection of the nozzles in function of the desired total flow rate (2 nozzles in operation) must be made accounting for the flow rate values that correspond to the diesel operating pressure of 12 bar. Replacing the nozzles it is possible to change considerably the ratio between first and second stage.


OPERATING DESCRIPTION TBML 210 - 310...

The burner's hydraulic circuit is equipped with a solenoid valve and a by-pass adjusting valve for a smooth vibration-less ignition when operating with liquid fuel.


A part of diesel is thus drained only during the first 3-4 seconds of operation of the burner. Once ignition is complete, the by-pass solenoid valve closes and the rate corresponds to the first stage value.

Use a screwdriver on the by-pass adjusting screw located inside the cap (16), (screw in to increase the pressure) so as to obtain only during the ignition stage a pressure of approx. 9 bars, measured by connecting a pressure gauge in position (17).

Correct if necessary the corresponding amount of combustion air by acting on the electronic equipment settings.

- ON / OFF main switch
- Thermostatic line switch
- 3 Display
- 4 Unlock or RESET button
- 5 Fusibile.
- Fuel loading button
- Fuel selector switch
- Programming keyboard

- 16 Cap for by-pass adjusting screw
- 17 Pump pressure gauge connection.

FIRST PIPELINE FILLING UP

After checking that the protective caps on the pump fittings have been removed, proceed as follows:

• Make sure that the line voltage coincides with the one indicated in the burner's identification plate.

A

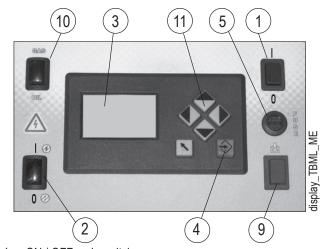
DANGER / ATTENTION

To positively determine the direction of rotation, wait until the fan turns very slowly because it is quite easy to misinterpret the direction of rotation.

- The fan rotation direction can be checked also by looking at the fan through the inspection hole located on the back of the scroll.
- If it is necessary to reverse the rotation direction, reverse two phases on the line input terminals (L1 L2 L3).
- To start up the motor, close the remote control switch manually by pressing on the mobile part for a few seconds and watch the sense of rotation of the fan.
- Detach, if already attached, the flexible hoses from the intake and return pipes.
- Dip the end of the flexible intake hose in a tin containing either lubricant or diesel (do not use low-viscosity products such as petrol, kerosene, etc.).
- Now press key (9) on the control panel to start the motor and the pump.

DANGER / ATTENTION

Pump operating at 2800 r.p.m. must not work dry otherwise they will jam (seizure) within a very short time.


- Attach the flexible hose to the intake pipe and open any gate valves fitted on this pipe and any other shut-off element on the fuel pipes.
- Press button (9) again to start up the pump that extracts the fuel from the tank.
- When you see fuel coming out of the return line (not yet connected), stop.

DANGER / ATTENTION

If the pipe is long, it may be necessary to bleed the air out through the cap; if the pump is not fitted with a cap, remove the pressure gauge connector cap.

Connect the flexible return hose to the pipe and open any gate valves fitted on this pipe. The burner is now ready to start up.

- ON / OFF main switch
- 2 Thermostatic line switch
- 3 Display
- 4 Unlock or RESET button
- 5 Fusibile.
- 9 Fuel loading button
- 10 Fuel selector switch
- 11 Programming keyboard

IGNITION AND ADJUSTMENT WITH LIQUID FUEL

CAUTION / WARNINGS

To obtain a proper ignition and combustion using the first flame alone, fuel supply should not be lower than the minimum capacity indicated on the burner identification plate.

Before starting up, make sure that:

- · The right type of fuel has been selected.
- Make sure that the mains voltage corresponds to the manufacturer's requirements and that all electrical connections made at the installation site are effected properly as illustrated in our wiring diagram.
- · Make sure that the combustion products may be freely vented through the boiler and flue dampers.
- · Check that there is water in the boiler and that the gate valves of the system are open.
- Check that all the gate valves fitted on the fuel suction and return pipes are open; the same applies to any other fuel shut-off devices.
- There is fuel oil in the tank and water in the boiler.
- · Make sure that the combustion head penetrates into the furnace to the extent requested by the boiler manufacturer. Check that the air closure device on the combustion head is in the right position to guarantee a correct combustion, the air passage between disk and head must be slightly reduced if a relatively small amount of fuel is supplied. When the fuel supply is abundant the air passage must be increased, see chapter "COMBUSTION HEAD ADJUSTMENT".
- Check that the nozzles fitted on the burner are suitable for the boiler capacity. If necessary, replace them with suitable ones.

CAUTION / WARNINGS

For burner adjustment see the quick guide supplied.

- Turn on the main switch and the one on the control panel.
- The programmer is activated and it starts carrying out the predefined program activating the burner devices. The equipment will start operation as described in the Chapter "DESCRIPTION OF OPERA-TION".

THERMAL RELAY CALIBRATION

The thermal relay prevents motor failure due to a large increase in electric absorption, or the lack of single-stage.

For calibrating, please refer to the nominal value of the motor current. To reset the burner, if the thermal relay trips, press the reset button (RESET).

DANGER / ATTENTION

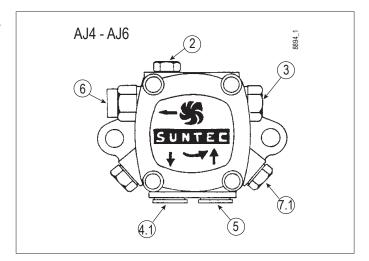
The automatic reset may be dangerous thus, when possible, do not set this function on the thermal relay.

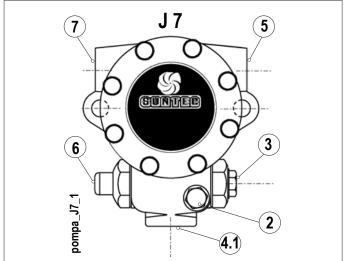
DETAILS OF PUMPS

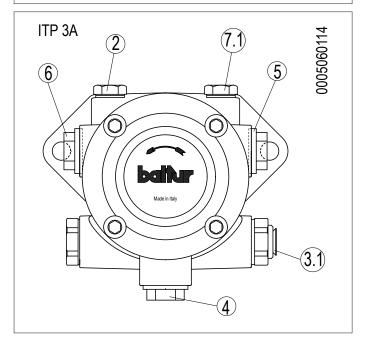
- 2 Pressure gauge connector and air vent (1/8"G)
- 3 Pressure regulation screw:

AN... 11 - 14 bars

AJ / J... 11 - 16 bars


- 3.1 Remove the nut to have access to the pressure adjustment screw
- 4 Return
- 4.1 Return with inner by-pass dowel
- 5 Suction
- 6 Delivery to nozzle
- 7 Vacuum gauge connector (1/8"G)
- 7.1 Vacuum gauge connector and internal by-pass dowel


CAUTION / WARNINGS


The pump is preset at a pressure of 12 bar

CAUTION / WARNINGS

In TBML 210, 310 the pump is to a pressure of 15 bar. The return pressure during ignition is 9 bar.

OPERATION DESCRIPTION WITH GASEOUS FUEL

The burner operates fully automatically: it is activated by switching on the main switch and the control panel switch.

Burner operation is managed by command and control electronic devices.

Blown air burners with electronic modulation may be used on hearths under strong pressure or in a vacuum, according to the corresponding operating curves.

They combine a very stable flame with total safety and high performance.

The burner is fitted with an electronic cam controlled by a microprocessor for intermittent operation, and for the control and monitoring of the blown air gas burners.

Electronic modulation achieved by means of two step air gas regulation motors.

The burner is fitted with a valve tightness control device. To better understand the operation of the electronic cam, read the specific instructions in the manual provided carefully.

The term two-stage progressive operation indicates that transition from the first to the second state (from minimum to maximum operation) is progressive in terms of both amount of combustion air let in and the amount of output fuel. This results in a greater pressure stability in the gas supply network.

Ignition is preceded by the combustion chamber pre-ventilation, as set forth by the standards, with air open and with a duration of approx. 30 seconds.

If the air pressure switch has detected a sufficient pressure, the ignition transformer activates at the end of the ventilation phase and after 3 seconds the safety and main valves open in sequence.

Gas reaches the combustion head, mixes with air supplied by the fan and is ignited. The gas supply is regulated by the butterfly gas valve. Flame presence is detected by the dedicated control device (UV photocell).

The programmer relay moves past the locking position and sends voltage to the air/gas supply adjustment servomotors, which go to the minimum point (200).

If the second stage boiler thermostat (or pressure switch) allows it (set to a temperature or pressure value higher than the existing value in the boiler), the air/gas supply servomotors will start to turn, gradually increasing gas and combustion air supplies up to the maximum supply to which the burner has been set (999).

The burner remains in the maximum output position as long as the temperature or pressure reaches a value sufficient enough to cause the intervention of the probe that rotates the gas/air flow rate regulation servomotors. This progressively reduces the gas, combustion air and motor's RPM (if the inverter is fitted) to the minimum.

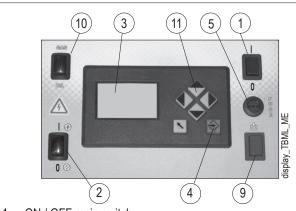
If the threshold value of temperature or pressure to which the control device is set is reached, the burner will be shut down.

As temperature or pressure drops below the control device set-point, the burner is started again as described above.

During normal operation, the modulation probe installed on the boiler measures any variation in temperature or pressure and automatically adjusts the fuel and combustion air flow rate through the relevant servomotors.

In this way the burner is able to optimise the request of heat to be supplied to the boiler.

If the flame does not appear within 3 seconds after the gas valves have opened, the control box goes into the lock-out condition (the burner shuts down completely and the warning light turns on). To "reset" the control box operation, press the reset button.

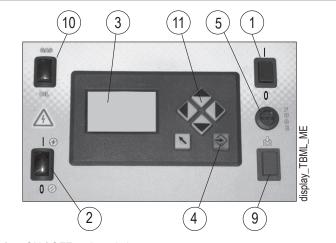

CAUTION / WARNINGS

The electronic cam controls the burner, activating the combustion air, gas servomotor and the fan motor, if the inverter is fitted, according to a curve that has ten points set (see curve regulation table).

DETAIL OF THROTTLE VALVE FOR GAS FLOW REGULATION BY MEANS OF SERVOMOTOR

- Graduated scale.
- Gas throttle valve position reference index.

- ON / OFF main switch
- Thermostatic line switch
- Display
- Unlock or RESET button
- 5 Fusibile.
- 9 Fuel loading button
- 10 Fuel selector switch
- 11 Programming keyboard


NATURAL GAS IGNITION AND REGULATION

- Bleed out the air contained in the gas piping, with due precautions and with doors and windows open.
- Open the union on the pipe near the burner and then open slightly the gas shut-off cocks.

When the characteristic odour of gas can be smelled, close the cut-off cock.

- Wait the time necessary for the gas in the room to disperse outside. Re-connect the burner to the gas pipeline.
- Check that there is water in the boiler and that the gate valves of the system are open.
- Make sure that the combustion products may be freely vented through the boiler and flue dampers.
- Make sure that the mains voltage corresponds to the manufacturer's requirements and that all electrical connections made at the installation site are effected properly as illustrated in our wiring diagram.
- Make sure that the combustion head is long enough to enter the furnace following the measure specified by the boiler manufacturer.
- Check that the air regulation device on the combustion head is in the correct position to deliver the required fuel.
- The air passage between disk and combustion head must be considerably reduced with minimum fuel delivery.
- · Increase combustion air flow when fuel delivery increases.
- · Refer to chapter "Air adjustment on the combustion head".
- Fit a pressure gauge of appropriate scale to the pressure intake on the gas pressure switch (if the amount of pressure to be used allows it, we recommend to use a water column instrument; do not use instruments with indicator hands for low pressures).
- With the switch on the burner panel at the position "0" and the main switch on, check, closing the contactor manually, that the motor rotates in the right direction. If necessary, swap the two power cables for the motor around to change the direction of rotation.
- If using the inverter, see the specific instructions in the quick guide.
- Now switch on the main switch. This powers on the control device, and the programmer turns on the burner as described in the chapter "Operation description". For burner adjustment, refer to the instructions for the electronic cam supplied.
- After having adjusted the "minimum", (200) turn the burner gradually to maximum, by using the controls on the electronic cam keyboard.
- Check combustion using the appropriate instrument at all intermediate points on the modulation route (from 200 to 999), checking the gas flow rate by reading the meter.
- Now check the proper automatic operation of modulation. This ensures that the equipment receives the signal from the electronic modulation regulator, if the burner is the modulating model, or from the second stage thermostat or pressure switch, if it is a two stage progressive burner.

- Check combustion using the appropriate instrument at all intermediate points on the modulation route (from minimum to maximum load), checking also the gas flow rate reading the meter.
- Now, check for the efficiency of automatic modulation operation by switching the ETAMATIC apparatus to the "AUTOMATIC" position.
 With this setting the modulation function will start only by using the automatic control of the boiler probe.

- 1 ON / OFF main switch
- 2 Thermostatic line switch
- 3 Display
- 4 Unlock or RESET button
- 5 Fusibile.
- 9 Fuel loading button
- 10 Fuel selector switch
- 11 Programming keyboard

FLAME SENSOR

The flame detecting UV photocell must be able to trigger upon system operation if the flame turns off (this check must be carried out after at least one minute from the ignition).

The photocell current value required for a correct operation of the equipment is indicated in the wiring diagram.

Even the slightest greasiness will compromise the passage of rays through the photocell bulb, thus preventing the sensitive internal element from receiving the quantity of radiation necessary for it to work properly. If the bulb is fouled with diesel, fuel oil, etc... it must be properly cleaned.

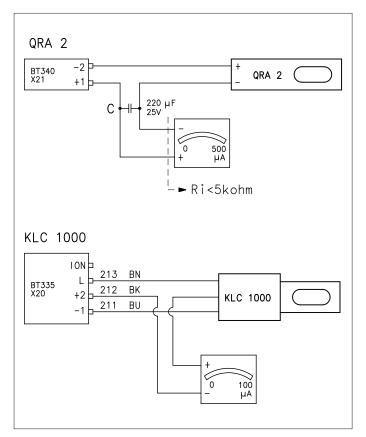
CAUTION / WARNINGS

Even simply touching the bulb with fingers may leave a slight greasiness which could compromise photocell operation.

The UV photocell does not detect daylight or the light from a common lamp.

Sensitivity can be checked with a flame (lighter) or with the electric discharge between the electrodes of a common ignition transformer. To ensure a proper operation, the UV photocell current value must be sufficiently stable and not go below the minimum value required for the equipment.

It may be necessary to tentatively find the best position by sliding (axial or rotational movement) the casing that contains the photocell with respect to the fastening clamp.


The burner should be capable of locking out and remain in that condition when, during the ignition sequence in the time pre-set by the control box, the flame does not regularly appear.

The lock-out condition leads to an immediate fuel shut-off, the system stops and the lock warning light comes on.

To check the photocell and lock-out efficiency, proceed as follows:

- Start the burner
- 2 After at least one minute from ignition remove the UV photocell from its seat, and simulate a flame failure. The burner flame must turn off, the equipment will immediately shut down in "lock-out" condition.
- The equipment can only be reset manually by pressing the reset button. The shut-down efficiency test must be performed at least twice.

Check the efficiency of the thermostats or boiler pressure switches (they should shut down the burner when triggered).

AIR PRESSURE SWITCH

The air pressure switch stops the equipment operation if air pressure is not at the expected value.

The pressure switch must therefore be adjusted so that it is triggered to close the NO (normally open) contact when the air pressure in the burner reaches a particular value.

If the air pressure switch does not detect a pressure greater than that calibrated, the equipment runs through its cycle but does not switch on the ignition transformer and does not open the gas valves and so the burner "locks-out".

To ensure correct operation of the air pressure switch you must, with burner on and in 1st stage, increase its regulation value until the burner triggers and then it immediately "locks-out".

Release the burner by pushing the appropriate button and readjust the pressure switch to a sufficient value to detect the existing air pressure during the pre-ventilation phase of the first stage.

Air pressure sampling point is downstream the air damper.

Adjust the setting of the pressure switch to a level slightly below the actual air pressure detected in first stage operation. Release the burner and check that it starts up correctly.

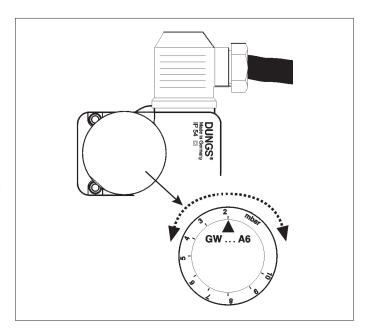
GAS CONTROL PRESSURE SWITCHES

The gas pressure control switches (minimum and maximum) prevent the burner from operating when gas pressure does not lie between the expected range.

The minimum value pressure switch makes use of the NO (normally open) contact which is closed when the pressure switch detects a pressure higher than its own setting.

The maximum pressure switch uses the NC (normally closed) contact that is closed when the pressure switch detects a pressure lower than the value it is set to.

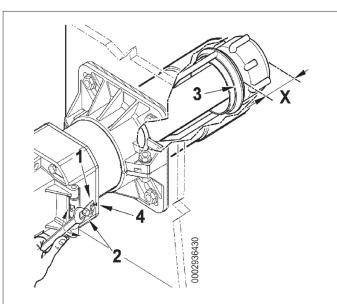
Adjustment of minimum and maximum pressure values on the pressure switches must be performed when testing the burner, on the basis of the pressure measured in each case.


The triggering (opening of the circuit) of any of the pressure switches when the burner is running (flame on) locks out the burner immediately. When first switching on the burner it is essential to check that they work properly.

IMPORTANT

In case only one pressure switch is installed on the gas train, it must be a pressure switch for minimum pressure.

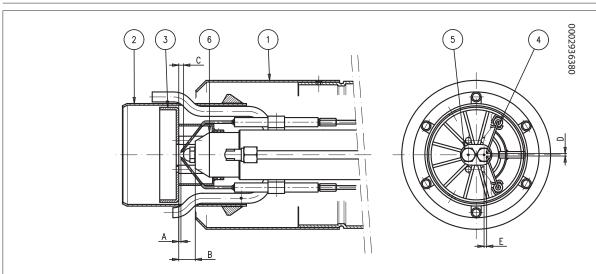
AIR REGULATION ON THE COMBUSTION HEAD


The combustion head is equipped with a regulation device that makes it possible to open or close the air passage between the disk and the head. Closing the passage increases the pressure upstream of the disk also with low flow rates. The high speed and turbulence of the air provides for its greater penetration into the fuel and therefore an excellent mixture and flame stability. High air pressure upstream of the disk may be necessary to prevent flame fluctuations, this is particularly essential when the burner works on the furnace that is pressurised and/or at a high thermal load.

The combustion head closing device must be set to a position in which, behind the disc, there is always a very high air pressure value. When the burner operates at maximum delivery, adjust the head air closure, in such a way as to require a considerable air flow damper opening. Therefore start the regulation with the device that closes the air on the combustion head in an intermediate position, igniting the burner for an indicative regulation as explained above. Move the combustion head forward or backward so as to have an air flow suitable for the delivery.

CAUTION / WARNINGS

The above adjustments are only indicative; position the combustion head according to the characteristics of the furnace.


н			
l	BURNER	X	Value indicated by index 4
l	TBML 80 ME	87 ÷ 95	1 ÷ 1,5
l	TBML 120 ME	119 ÷ 155	1 ÷ 5
l	TBML 160 ME	119 ÷ 155	1 ÷ 5
l	TBML 210 LX ME	121 ÷ 157	1 ÷ 5
l	TBML 310 LX ME	1 ÷ 48	1 ÷ 5

X = Head-disk distance; adjust distance X following the instructions:

- X = Distance between diffuser and disc for TBML 310LX ...
- Loosen the screw (1)
- Turn screw (2) to position the combustion head (3), referring to index (4)
- Adjust the distance (x) between the minimum and maximum according to the indications in the table

DIAGRAM FOR REGULATING THE COMBUSTION HEAD AND THE ELECTRODE DISK DISTANCE

- 1						
	Model	A	В	С	D	E
	TBML 80 MC/ME	1 ÷ 1, 5	20 ÷ 21	6 ÷ 7	3 ÷ 4	5 ÷ 6
	TBML 120 MC/ME	1 ÷ 1, 5	20 ÷ 21	6 ÷ 7	3 ÷ 4	8 ÷ 9
	TBML 160 MC/ME	1 ÷ 1, 5	20 ÷ 21	6 ÷ 7	3 ÷ 4	8 ÷ 9
	TBML 210 LX MC / LX ME	2 ÷ 3	23 ÷ 24	10 ÷ 11	3 ÷ 4	8 ÷ 9
	TBML 310 LX MC / LX ME	0,5	-	-	2,5 ÷ 3,5	7,5 ÷ 8,5

- 1 Diffuser
- 2 Internal diffuser
- 3 Flame disc
- 4 Ignition electrodes
- 5 Nozzles
- 6 Nozzle holder sleeve

After installing the nozzles, check the correct position of the electrodes and disk according to the following measurements indicated in mm.

It's advisable to check the levels after every intervention on head.

Recommended nozzles: STEINEN type SS 45° (TBML 80-120..)

MONARCH type HV 45° (TBML 160..)

STEINEN type SS 45° (TBML 210)

MONARCH type PLP 45° (TBML 210)

FLUIDICS type HF 45° (TBML 310)

SPECIFICATIONS FOR PROPANE USE

- Operating costs approximate assessment;
 - 1 m3 of liquid gas in gaseous stage has a lower heating capacity, of nearly 25.6 kWh.
 - To obtain 1 cu.m of gas, about 2 kg of liquid gas are needed, i.e. about 4 litres of liquid gas.
- · Safety provisions
- Liquid propane gas (L.P.G.) in the gaseous form has a greater specific weight than air (specific weight relative to air = 1.56 for propane), which means it does not disperse in air like natural gas, which has a lower specific weight than air (specific weight of natural gas relative to air = 0.60), but precipitates and spreads out at ground level (as if it were a liquid). Summing up the concepts we deem most relevant fir the use of LPG
- Liquefied petroleum gas (L.P.G.) burners and/or boilers may be used only in premises located above ground level and certified toward free spaces. Installations using liquid gas are not allowed in underground or semi-underground premises.
- Rooms where liquid gas is used must have ventilation inlets without closing devices, located on external walls, in compliance with the local exiting rules.
- Carrying out the propane gas system to ensure correct, safe operation.

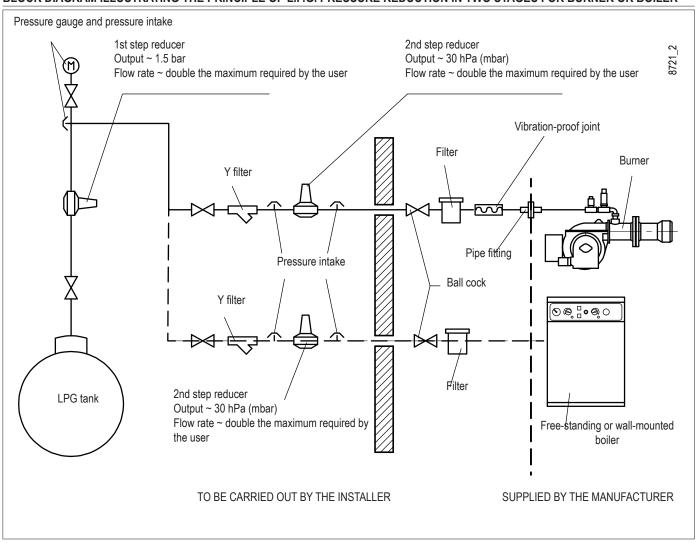
Natural gasification from sets of cylinders or a tank can be used only in low power systems. Gas supply capacity on the basis of tank size and minimum outdoor temperature are shown in the table below, as an approximate indication only.

DANGER / ATTENTION

The maximum and minimum power (kW) of the burner refers to natural gas which is more or less the same as with propane.

· Combustion control

To keep consumption down and mainly to prevent serious problems, regulate the combustion using the specific instruments. It is absolutely essential to check that the percentage of carbon monoxide (CO) does not exceed the maximum permitted value by the local existing regulation (use a combustion analyser or other similar instrument).

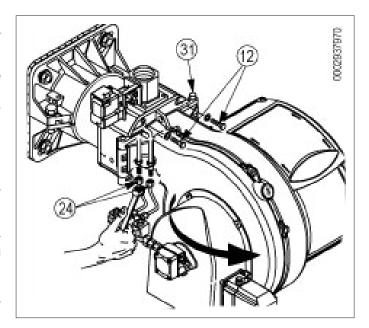

DANGER / ATTENTION

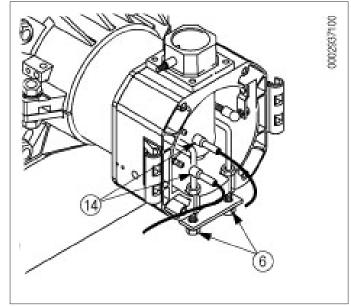
The warranty does not cover burners burning liquid gas (L.P.G.) in installations in which these measures have not been taken.

Minimum temperature	- 15 °C	- 10 °C	- 5 °C	- 0 °C	+ 5 °C	
Tank 990 I.	1.6 Kg/h	2.5 Kg/h	3.5 Kg/h	8 Kg/h	10 Kg/h	
Tank 3000 I.	2.5 Kg/h	4.5 Kg/h	6.5 Kg/h	9 Kg/h	12 Kg/h	
Tank 5000 I.	4 Kg/h	6.5 Kg/h	11.5 Kg/h	16 Kg/h	21 Kg/h	

BLOCK DIAGRAM ILLUSTRATING THE PRINCIPLE OF L.P.G. PRESSURE REDUCTION IN TWO STAGES FOR BURNER OR BOILER

MAINTENANCE

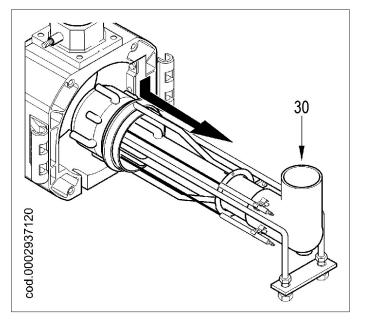

TBML 80 ..

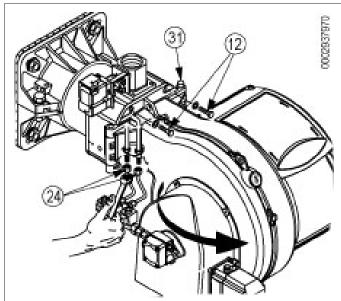

Analyse combustion gases and check that the emission values are correct at least once a year, in compliance with current law.

- Clean air damper, the air pressure switch with pressure port and the relevant pipe, if any.
- · Check the electrode condition. Replace them, if necessary.
- · Clean the photocell. Replace it, if necessary.
- Have the burner and the chimney cleaned by specialised personnel (stove repairer); a clean burner is more efficient, lasts longer and is quieter.
- · Check that the fuel filter is clean. Replace it, if necessary.
- Check that all components of the combustion head are in good condition, have not been deformed and are free from deposits deriving from the installation environment and/or from poor combustion.
- Analyse combustion gases and check emissions values.

If the combustion head needs to be cleaned, remove the components following the procedure indicated below:

- Disconnect the diesel oil hoses (24) from the connectors beneath the Head Unit, be careful of drips.
- Unscrew the two screws (12) and turn the burner around the pin (31) in the hinge.
- After pulling the ignition and ionisation cables (14) out of their electrodes, unscrew the locking nuts (6) from the mixing unit. Loosen nut (9) and completely unscrew the fastening screw on the delivery coupling (19).
- With suitable wrench, loosen the screw (8) in the direction indicated by the arrow, unhooking the lever that moves the combustion head forward.


TBML 120 - 160 - 210 - 310


Analyse combustion gases and check that the emission values are correct at least once a year, in compliance with current law.

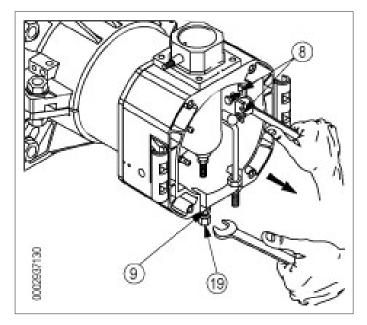
- Clean air damper, the air pressure switch with pressure port and the relevant pipe, if any.
- · Check the electrode condition. Replace them, if necessary.
- · Clean the photocell. Replace it, if necessary.
- Have the burner and the chimney cleaned by specialised personnel (stove repairer); a clean burner is more efficient, lasts longer and is quieter.
- · Check that the fuel filter is clean. Replace it, if necessary.
- Check that all components of the combustion head are in good condition, have not been deformed and are free from deposits deriving from the installation environment and/or from poor combustion.
- Analyse combustion gases and check emissions values.

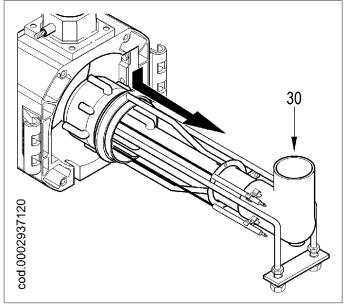
If the combustion head needs to be cleaned, remove the components following the procedure indicated below:

- Disconnect the diesel hoses (24) from the connectors beneath the head unit (mind the dripping).
- Unscrew the two screws (12) and turn the burner around the pin (31) in the hinge.
- After pulling the ignition and ionisation cables (14) out of their electrodes, unscrew the locking nuts (6) from the mixing unit. Loosen nut (9) and completely unscrew the fastening screw on the delivery coupling (19).

· With suitable wrench, loosen the screw (8) in the direction indicated by the arrow, unhooking the lever that moves the combustion head forward.

CAUTION / WARNINGS


In the TBML 200-260-360 .. burners it is not necessary to release the head adjustment lever.


- Slightly lower the gas delivery connection (30) and remove the entire mixing unit in the direction indicated by the arrow.
- · Having completed the maintenance work, replace the combustion head, following in reverse order the operations described above, after having checked the correct position of ignition and ionisation electrodes.

DANGER / ATTENTION

When turning on the burner, after connecting the electrode leads to the terminals, secure them to the gas delivery fitting using a

MAINTENANCE TIME

Part description	Action to be performed	Gas	Diesel
	COMBUSTION HEAD		
ELECTRODES	VISUAL INSPECTION OF THE INTEGRITY OF CERAMICS. TIP GRINDING, CHECK DISTANCE,	YEARLY	YEARLY
ELECTRODES	CHECK ELECTRICAL CONNECTION	TEARLT	TEARLY
FLAME DISC	INTEGRITY VISUAL CHECK FOR ANY DEFORMATIONS, CLEANING,	YEARLY	YEARLY
IONISATION PROBE	VISUAL INSPECTION OF THE INTEGRITY OF CERAMICS. TIP GRINDING, CHECK DISTANCE, CHECK ELECTRICAL CONNECTION	YEARLY	n.a.
COMBUSTION HEAD COMPONENTS	INTEGRITY VISUAL CHECK FOR ANY DEFORMATIONS, CLEANING,	YEARLY	YEARLY
LIQUID FUEL NOZZLES	REPLACEMENT	n.a.	YEARLY
LIQUID FUEL NOZZLE	CHECKING AND REPLACING, IF NECESSARY, SOLENOID VALVES AND SEALING RINGS, CLEANING ORIFICE AND SWIRLER	n.a.	YEARLY
INSULATING GASKET	SEAL VISUAL INSPECTION AND POSSIBLE REPLACEMENT	YEARLY	YEARLY
GAS DELIVERY COUPLING SEAL	SEAL VISUAL INSPECTION AND POSSIBLE REPLACEMENT	YEARLY	n.a.
	AIR LINE		
AIR GRILLE/DAMPERS	CLEANING	YEAR	YEAR
AIR DAMPER BEARINGS	GREASING, (Note: apply only on burners with bearings requiring lubrication)	YEAR	YEAR
FAN	FAN AND SCROLL CLEANING, DRIVE SHAFT GREASING	YEAR	YEAR
AIR PRESSURE SWITCH	CLEANING	YEAR	YEAR
AIR PRESSURE PORT AND PIPES	CLEANING	YEAR	YEAR
AIR TRESONET SITTAINS I II ES	SAFETY COMPONENTS	12/11	12/11
FLAME SENSOR	CLEANING	YEAR	YEAR
GAS PRESSURE SWITCH	FUNCTIONAL INSPECTION	YEAR	n.a.
ONOT NECOCINE OWN ON	VARIOUS COMPONENTS	1 1 1 1 1 1 1	in.u.
ELECTRIC MOTORS	COOLING FAN CLEANING, BEARING NOISE CHECK	YEAR	YEAR
MECHANICAL CAM	CHECK OF WEAR AND OPERATION, GREASING OF SLIDING BLOCK AND SCREWS	YEAR	YEAR
LEVERS/TIE-RODS/BALL JOINTS	CHECK OF ANY WEAR. COMPONENT LUBRICATION	YEAR	YEAR
ELECTRICAL SYSTEM	CHECK OF CONNECTIONS AND TERMINAL TIGHTENING	YEAR	YEAR
INVERTER	COOLING FAN CLEANING AND TERMINAL TIGHTENING	YEAR	YEAR
CO PROBE	CLEANING AND CALIBRATION	YEAR	YEAR
O2 PROBE	CLEANING AND CALIBRATION	YEAR	YEAR
COMBUSTION HEAD EXTRACTION KIT	CHECKING WEAR AND OPERATION	YEAR	YEAR
	FUEL LINE		
HOSES	REPLACEMENT	n.a.	5 YEARS
PUMP FILTER	CLEANING	n.a.	YEAR
LINE FILTER	FILTERING ELEMENT CLEANING / REPLACEMENT	n.a.	YEAR
OIL TANK FILTER	CLEANING WITH COLD FUEL OIL	n.a.	n.a.
GAS FILTER	REPLACING THE FILTERING ELEMENT	YEAR	n.a.
HYDRAULIC/GAS SEALS	CHECK OF ANY LEAKAGES	YEAR	n.a.
OIL PRE-HEATER	CLEANING, CONDENSATE DRAIN FROM LOWER CAP TO COLD FUEL OIL	n.a.	n.a.
	COMBUSTION PARAMETERS		
CO CONTROL	COMPARISON WITH VALUES RECORDED AT SYSTEM START-UP	YEAR	YEAR
CO2 CONTROL	COMPARISON WITH VALUES RECORDED AT SYSTEM START-UP	YEAR	YEAR
BACHARACH SMOKE INDEX CONTROL	COMPARISON WITH VALUES RECORDED AT SYSTEM START-UP	n.a.	YEAR
NOX CONTROL	COMPARISON WITH VALUES RECORDED AT SYSTEM START-UP	YEAR	YEAR
IONISATION CURRENT CONTROL	COMPARISON WITH VALUES RECORDED AT SYSTEM START-UP	YEAR	n.a.
SMOKE TEMPERATURE CONTROL	COMPARISON WITH VALUES RECORDED AT SYSTEM START-UP	YEAR	YEAR
DELIVERY/SCAVENGE OIL PRESSURE CONTROL	COMPARISON WITH VALUES RECORDED AT SYSTEM START-UP	n.a.	YEAR
GAS PRESSURE REGULATOR	PRESSURE MEASURED AT START-UP	YEAR	n.a.

IMPORTANT

In case of heavy-duty operation or when using special fuels, the maintenance intervals must be reduced adapting them to the real operating conditions, according to the indications of the maintenance technician.

EXPECTED LIFESPAN

The expected lifespan of burners and relevant components depends very much from the type of application on which the burner is installed, from cycles ,of delivered power, from the conditions of the environment in which it is located, from maintenance frequency and mode, etc.

Standards about safety components provide for a project expected lifespan expressed in cycles and/or years of operation.

Such components ensure the correct operation in standard (*) operating conditions, with periodic maintenance according to the instructions contained in the manual.

The table below shows the project expected lifespan of the main safety components; approximately, operating cycles correspond to the burner activations.

When this expected lifespan limit has almost been reached the component must be replaced with an original spare part.

IMPORTANT

warranty conditions (laid down in contracts and/or delivery or payment notes, if necessary) are independent and do not refer to the expected lifespan stated below.

(*) "Normal" operating conditions means applications on water boilers and steam generators or industrial applications compliant with the standard EN 746, in environments with temperatures within the limits provided for in this manual and with pollution degree 2 in compliance with annex M of the standard EN 60204-1.

Cafaturananat	Project expected lifespan		
Safety component	Operating cycles	Years of operation	
Control box	250 000	10	
Flame sensor (1)	n.a.	10,000 operating hours	
Seal control	250 000	10	
Gas pressure switch	50 000	10	
Air pressure switch	250 000	10	
Gas pressure regulator (1)	n.a.	15	
Gas valves (with seal check)	Until the first s	eal fault signal	
Gas valves (without seal check) (2)	250 000	10	
Servomotors	250 000	10	
Liquid fuel hoses	n a	5 (every year for fuel oil burners or in the presence of	
Liquid idei fioses	n.a.	biodiesel in diesel/kerosene)	
Liquid fuel valves	250 000	10	
Air fan impeller	50,000 activations	10	

⁽¹⁾ The characteristics can degrade over time; during the annual maintenance the sensor must be checked and in case of flame signal degradation must be replaced.

⁽²⁾ Using normal mains gas.

NOZZLE FLOW RATE TABLE

Noz- zle										Pump	pressure	in bar										Noz-
G.P.H.	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	G.P.H.
0,40	1,18	1,27	1,36	1,44	1,52	1,59	1,67	1,73	1,80	1,86	1,92	1,98	2,04	2,10	2,15	2,20	2,25	2,31	2,36	2,40	2,45	0,40
0,50	1,47	1,59	1,70	1,80	1,90	1,99	2,08	2,17	2,25	2,33	2,40	2,48	2,55	2,62	2,69	2,75	2,82	2,88	2,94	3,00	3,05	0,50
0,60	1,77	1,91	2,04	2,16	2,28	2,39	2,50	2,60	2,70	2,79	2,88	2,97	3,06	3,14	3,22	3,30	3,38	3,46	3,53	3,61	3,68	0,60
0,65	1,91	2,07	2,21	2,34	2,47	2,59	2,71	2,82	2,92	3,03	3,12	3,22	3,31	3,41	3,49	3,58	3,66	3,75	3,83	3,91	3,98	0,65
0,75	2,20	2,38	2,55	2,70	2,85	2,99	3,12	3,25	3,37	3,49	3,61	3,72	3,82	3,93	4,03	4,13	4,23	4,32	4,42	4,51	4,60	0,75
0,85	2,50	2,70	2,89	3,06	3,23	3,39	3,54	3,68	3,82	3,96	4,09	4,21	4,33	4,45	4,57	4,68	4,79	4,90	5,00	5,11	5,21	0,85
1,00	2,94	3,18	3,40	3,61	3,80	3,99	4,16	4,33	4,50	4,65	4,81	4,96	5,10	5,24	5,37	5,51	5,64	5,76	5,89	6,01	6,13	1,00
1,10	3,24	3,50	3,74	3,97	4,18	4,38	4,58	4,77	4,95	5,12	5,29	5,45	5,61	5,76	5,91	6,06	6,20	6,34	6,48	6,61	6,74	1,10
1,20	3,53	3,82	4,08	4,33	4,56	4,78	5,00	5,20	5,40	5,59	5,77	5,95	6,12	6,29	6,45	6,61	6,76	6,92	7,07	7,21	7,35	1,20
1,25	3,68	3,97	4,25	4,50	4,75	5,00	5,20	5,40	5,60	5,80	6,00	6,20	6,35	6,55	6,70	6,85	7,05	7,20	7,35	7,50	7,65	1,25
1,35	3,97	4,29	4,59	4,87	5,13	5,38	5,62	5,85	6,07	6,28	6,49	6,69	6,88	7,07	7,26	7,44	7,61	7,78	7,95	8,11	8,27	1,35
1,50	4,42	4,77	5,10	5,41	5,70	5,90	6,24	6,50	6,75	6,98	7,21	7,43	7,65	7,86	8,06	8,26	8,46	8,65	8,83	9,01	9,19	1,50
1,65	4,86	5,25	5,61	5,95	6,27	6,58	6,87	7,15	7,42	7,68	7,93	8,18	8,41	8,64	8,87	9,09	9,30	9,51	9,71	9,92	10,11	1,65
1,75	5,15	5,56	5,95	6,31	6,65	6,98	7,29	7,58	7,87	8,15	8,41	8,67	8,92	9,17	9,41	9,64	9,86	10,09	10,30	10,52	10,72	1,75
2,00	5,89	6,30	6,80	7,21	7,60	7,97	8,33	8,67	8,99	9,31	9,61	9,91	10,20	10,48	10,75	11,01	11,27	11,53	11,78	12,02	12,26	2,00
2,25	6,62	7,15	7,65	8,15	8,55	8,97	9,37	9,75	10,12	10,47,	10,85	11,15	11,47	11,79	12,09	12,39	12,68	12,97	13,25	13,52	13,79	2,25
2,50	7,36	7,95	8,50	9,01	9,50	9,97	10,41	10,83	11,24	11,64	12,02	12,39	12,75	13,10	13,44	13,77	14,09	14,41	14,72	15,02	15,32	2,50
3,00	8,83	9,54	10,20	10,82	11,40	11,96	12,49	13,00	13,49	13,96	14,42	14,87	15,30	15,72	16,12	16,52	16,91	17,29	17,66	18,03	18,35	3,00
3,50	10,30	11,13	11,90	12,62	13,30	13,95	14,57	15,17	15,74	16,29	16,83	17,34	17,85	18,34	18,81	19,28	19,73	20,17	20,61	21,03	21,45	3,50
4,00	11,77	12,72	13,60	14,42	15,20	15,94	16,65	17,33	17,99	18,62	19,23	19,82	20,40	20,95	21,50	22,03	22,55	23,06	23,55	24,04	24,51	4,00
4,50	13,25	14,31	15,30	16,22	17,10	17,94	18,73	19,50	20,24	20,95	21,63	22,30	22,95	23,57	24,19	24,78	25,37	25,94	26,49	27,04	27,58	4,50
5,00	14,72	15,90	17,00	18,03	19,00	19,93	20,82	21,67	22,48	23,27	24,04	24,78	25,49	26,19	26,87	27,54	28,19	28,82	29,44	30,05	30,64	5,00
5,5	16,19	17,49	18,70	19,83	20,90	21,92	22,90	23,83	24,73	25,60	26,44	27,25	28,04	28,81	29,56	30,29	31,00	31,70	32,38	33,05	33,70	5,5
6,00	17,66	19,00	20,40	21,63	22,80	23,92	24,98	26,00	26,98	27,93	28,84	29,73	30,59	31,43	32,25	33,04	33,82	34,58	35,33	36,05	36,77	6,00
6,50	19,13	20,67	22,10	23,44	23,70	25,91	27,06	28,17	29,23	30,26	31,25	32,21	33,14	34,05	34,94	35,80	36,64	37,46	38,27	39,06	39,83	6,50
7,00	20,60	22,26	23,79	25,24	26,60	27,60	29,14	30,33	31,48	32,58	33,65	34,69	35,69	36,67	37,62	38,55	39,46	40,35	41,21	42,06	42,90	7,00
7,50	22,07	23,85	25,49	27,04	28,50	29,90	31,22	32,50	33,73	34,91	36,05	37,16	38,24	39,29	40,31	41,31	42,28	43,23	44,16	45,07	45,96	7,50
8,30	24,43	26,39	28,21	29,93	31,54	33,08	34,55	35,97	37,32	38,63	39,90	41,13	42,32	43,48	44,61	45,71	46,79	47,84	48,87	49,88	50,86	8,30
9,50	27,96	30,21	32,29	34,25	36,10	37,87	39,55	41,17	42,72	44,22	45,67	47,07	48,44	48,77	51,06	52,32	53,55	54,76	55,93	57,09	58,22	9,50
10,50	30,90	33,39	35,69	37,86	40,06	41,73	43,74	45,41	47,20	48,90	50,50	52,00	53,50	55,00	56,40	57,80	59,20	60,50	61,80	63,10	64,30	10,50
12,00	35,32	38,20	40,80	43,30	45,60	47,80	50,00	52,00	54,00	55,90	57,70	59,50	61,20	62,90	64,50	66,10	67,60	69,20	70,70	72,10	73,60	12,00
13,80	40,62	43,90	46,90	49,80	52,40	55,00	57,50	59,80	62,10	64,20	66,30	68,40	70,40	72,30	74,30	76,00	77,80	79,50	81,30	82,90	84,60	13,80
15,30	45,03	48,60	52,00	55,20	58,10	61,00	63,70	66,30	68,80	71,10	73,60	75,80	78,00	80,20	82,20	84,30	86,20	88,20	90,10	91,90	93,80	15,30
17,50	55,51	55,60	59,50	63,10	66,50	69,80	72,90	75,80	78,70	81,50	84,10	86,70	89,20	91,70	94,10	96,40	98,60	100,90	103,00	105,20	107,20	17,50
19,50	57,40	62,00	66,30	70,30	74,10	77,70	81,20	84,50	87,70	90,80	93,70	96,60	99,40	102,20	104,80	107,40	109,90	112,40	114,80	117,20	119,50	19,50
21,50	63,20	68,40	73,10	77,50	81,70	85,70	89,50	93,20	96,70	100,10	103,40	106,50	109,60	112,60	115,60	118,40	121,20	123,90	126,60	129,20	131,80	21,50
24,00	70,64	76,30	81,60	86,50	91,20	95,70	99,90	104,00	107,90	111,70	115,40	118,90	122,40	125,70	129,00	132,20	135,30	138,30	141,30	144,20	147,10	24,00
28,00	82,41	89,00	95,20	101,00	106,40	111,60	116,60	121,30	125,90	130,30	134,60	138,70	142,80	146,70	150,50	154,20	157,80	161,40	164,90	168,30	171,60	28,00
30,00	88,30	95,40	102,00	108,20	114,00	119,60	124,90	130,00	134,90	139,60	144,20	148,70	153,00	157,20	161,20	165,20	169,10	172,90	176,60	180,30	183,80	30,00
G.P.H.	G.P.H. Nozzle output flow-rate G.P.H								G.P.H.													

1 mbar = 10 mmCA = 100 Pa

1 kW = 860 kcal

Diesel density =0.820 / 0.830 PCI = 10150

PCI Lower Calorific Value

In order to select the nozzle it is necessary to know the pump operating pressure (in bar) and the fuel flow rate to be delivered (in kg/h). In the vertical column of the used pump pressure it is possible to find the required fuel flow rate (choose the value which was rounded down). Next to the flow rate value found, look at the border of the same horizontal line in the column "Nozzles", to find the corresponding Nozzle expressed in G.P.H.

Example

Pump pressure: 12 bars Required capacity: 15 bars

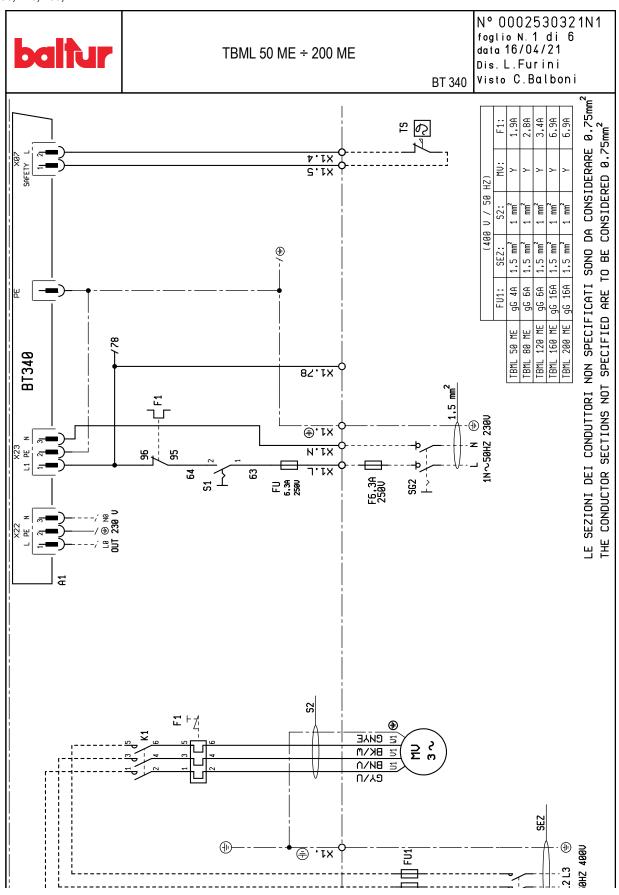
Flow rate indicated on the diagram: 14.57 kg/h

Calculated nozzle: 3.50 G.P.H.

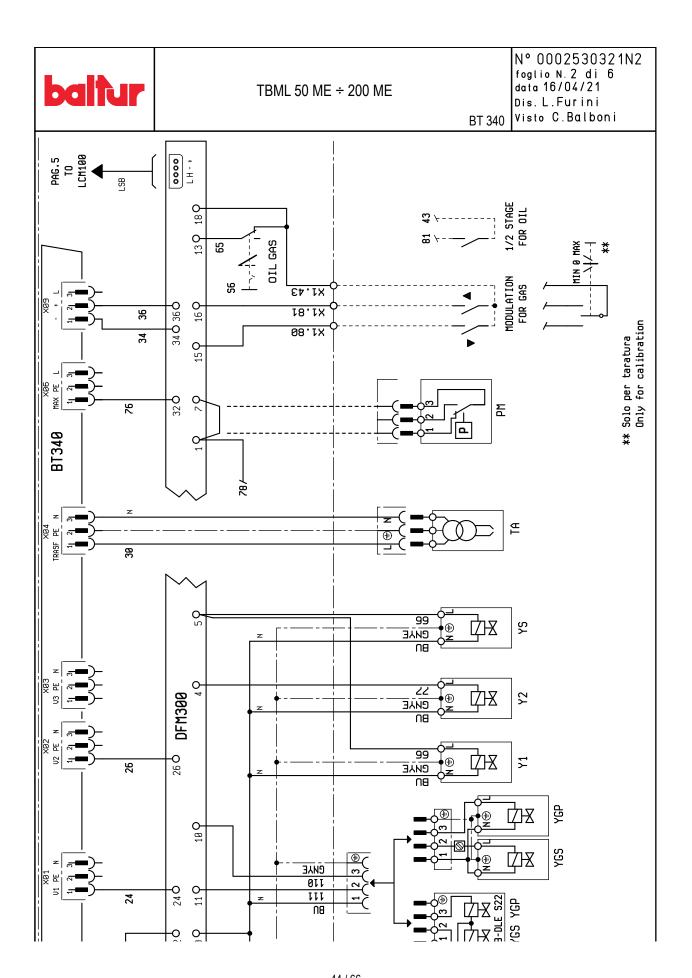
INSTRUCTIONS FOR DETERMINING THE CAUSE LEADING TO IRREGULARITIES IN THE OPERATION AND THEIR ELIMINATION

IRREGULARITY	POSSIBLE CAUSE	REMEDY						
The burner does not start.(The equipment does not perform the start up program).	 Thermostats (boiler or room) or pressure switches are open. Photoresistor in short circuit. Absence of line voltage, main switch open, meter switch tripped or absence of line voltage. Thermostat line not wired according to diagram or open thermostats. Equipment internal fault. 	 Raise the thermostats settings, or wait that the contacts close for natural decrease of temperature or pressure. Replace it. Activate switches or wait for power to return. Check the connections and thermostats. Replace it. 						
Defective flame with sparks.	 Spraying pressure is too low. Too much combustion air. Nozzle inefficient because dirty or worn. Water in the fuel. 	 Restore it at the required value. Reduce combustion air Clean or replace. Drain water from the tank using a suitable pump. Never use the burner pump for this purpose. 						
Flame not properly shaped with presence of smoke and soot.	 Insufficient combustion air flow. Nozzle inefficient because dirty or worn. Nozzle capacity too low with respect to combustion chamber volume. Combustion chamber unsuitably designed or too small. Unsuitable refractory coating (it reduces excessively the space of the flame). Boiler or chimney ducts blocked. Spraying pressure is low. 	 Increase combustion air. Clean or replace. Decrease diesel flow rate to suit the chamber (thermal power will obviously be lower than necessary) or replace the boiler. Increase nozzle flow by replacing it. Modify it, carefully abiding by the instructions given by boiler manufacturer. Arrange for cleaning. Restore it at the required value. 						
Defective flame, flickering or protruding from combustion orifice.	 Excessive draught, only when there is an extractor in the chimney. Nozzle inefficient because dirty or worn. Water in the fuel. Dirty flame disk. Too much combustion air. Air passage between flame disk and diffuser excessively closed. 	 Adjust the suction fan speed by changing the pulley diameter. Clean or replace. Drain water from the tank using a suitable pump. Never use the burner pump for this purpose. Clean. Reduce combustion air. Correct the position of the combustion head regulating device. 						

IRREGULARITY	POSSIBLE CAUSE	REMEDY		
Corrosion inside the boiler.	 Boiler operating temperature too low (below the dew point). Smoke temperature too low, approximately below 130 °C for diesel. 	 1 Increase the operating temperature. 2 Increase diesel flow rate is the boiler allows it. 		
Soot at chimney outlet.	Excessive cooling of smoke (approximately below 130°C) in the chimney, for an outside chimney not adequately heat insulated or cold air infiltration.	Improve insulation and close any opening letting cold air into the chimney.		
The burner goes into lock-out (red light on). The fault is in the flame control device.	 Flame sensor off or soiled with smoke Insufficient draught. Flame sensor circuit interrupted in the equipment. Dirty flame disk and diffuser. 	 Clean or replace. Check all the smoke ducts in the boiler and in the chimney. Replace the equipment. Clean. 		
The burner goes into lock-out spraying liquid fuel but the flame does not ignite (red light on). The trouble is in the ignition device, providing the fuel is not polluted with water or other impurities and sufficiently atomised. The equipment goes into "lock-out", gas flows out, but there is no flame (red light on). Fault in ignition circuit.	 Ignition circuit severed. The ignition transformer cables are discharging to ground. The ignition transformer leads are not properly connected. Ignition transformer is faulty. The electrode faces are not at the right distance. Electrodes discharge to earth because they are dirty or their insulation is cracked: check also the porcelain insulator terminals. 	 Check the entire circuit. Replace. Restore the connection. Replace. Return to the required position. Clean and if necessary replace them. 		

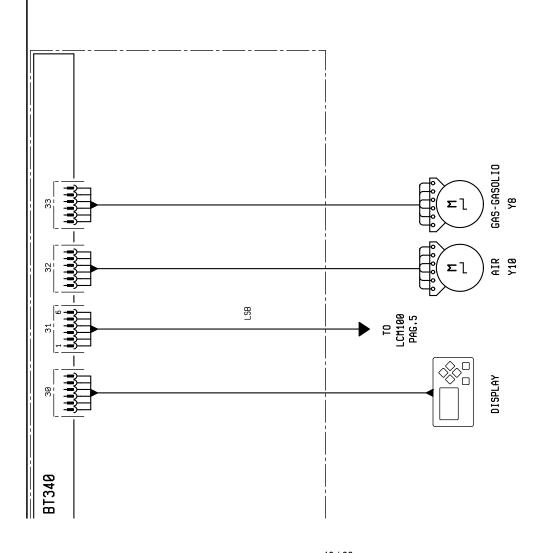


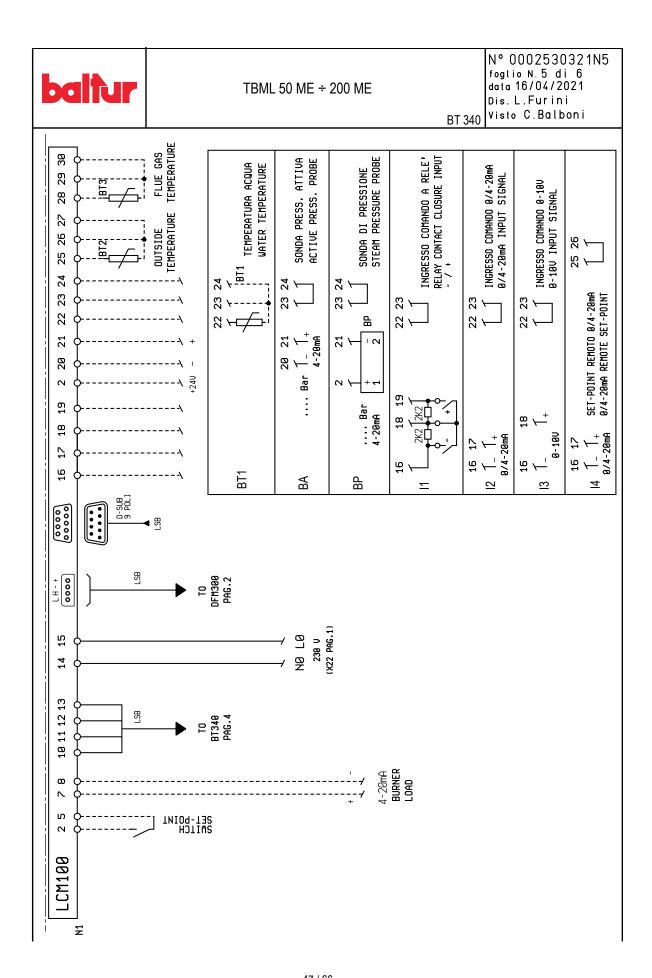
IRREGULARITY	POSSIBLE CAUSE	REMEDY		
The burner goes into lock-out spraying liquid fuel but the flame does not ignite. (red light on).	 Pump pressure is not regular. Water in the fuel. Too much combustion air. Air passage between flame disk and diffuser excessively closed. Nozzle worn out or dirty. 	 Adjust. Drain water from the tank using a suitable pump. Never use the burner pump for this purpose. Reduce combustion air. Correct the position of the combustion head adjusting device. Clean or replace. 		
The burner goes into "lock-out", gas flows, but there is no flame (red light on).	 Air - gas ratio incorrect. Gas pipe has not been properly bled of air at the first ignition. The gas pressure is insufficient or excessive. Air passage between flame disk and diffuser too closed. 	 Correct the air - gas ratio. Bleed the gas pipe again, with due caution. Check the maximum gas pressure value at the time of ignition (use a water pressure gauge, if possible). Adjust the flame disk - diffuser. 		
Burner pump noisy.	 Pipe diameter too small. Air infiltration in the pipes. Dirty fuel filter. Excessive distance and/or difference in level between the tank and the burner or numerous accidental leakages (elbows, curves, bottlenecks, etc.) Deteriorated flexible pipes. 	 Replace it according to the instructions. Check and eliminate infiltrations. Remove and wash. Adjust the length of the suction pipe to reduce the distance. Replace. 		



WIRING DIAGRAMS


TBML 80, 120, 160,




TBML 50 ME ÷ 200 ME

N° 0002530321N4 foglio N. 4 di 6 data 16/04/21 Dis. L.Furini

BT 340 Visto C.Balboni

A8 DUAL FUEL EQUIPMENT

B1 Flame sensor

BT1 WATER TEMPERATURE PROBE

BT2 EXTERNAL TEMPERATURE PROBE

BT3 EXHAUST GAS TEMPERATURE PROBE

BP PRESSURE PROBE

BA ACTIVE PROBE

F1 THERMAL RELAY

FU1÷4 FUSES

H0 EXTERNAL LOCK INDICATOR LIGHT/ AUXILIARY HEATING

ELEMENT OPERATION LAMP

H7 FAN MOTOR THERMAL SWITCH RELAY LOCK-OUT LAMP

K1 FAN MOTOR CONTACTOR

11 RELAY-CONTROLLED INLET

12 0/4 - 20 mA CONTROL INLET

I3 0 - 10V CONTROL INLET

14 0/4 - 20 mA REMOTE SETPOINT

MV FAN MOTOR

N1 "ELECTRONIC REGULATOR

PA AIR PRESSURE SWITCH

Pm MINIMUM PRESSURE SWITCH

S1 START/STOP SWITCH

S6 FUEL SWITCH

S7 TANK /SYSTEM FILLING BUTTON

S24 SWITCH ON/OFF

SG MAIN SWITCH

TA IGNITION TRANSFORMER

TC BOILER THERMOSTAT

TS SAFETY THERMOSTAT

X1 BURNER TERMINAL BOARD

Y1/Y2 1st / 2nd STAGE SOLENOID VALVES

Y8 GAS SERVOMOTOR

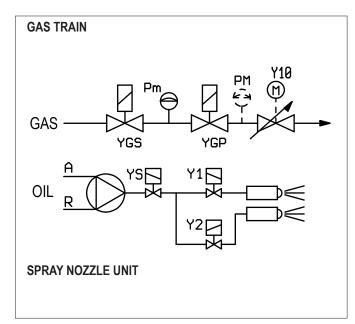
Y10 AIR SERVOMOTOR

YEF ELECTRIC-CLUTCH

YGP MAIN GAS SOLENOID VALVE

YGS SAFETY GAS SOLENOID VALVE

YS/YS1 SAFETY SOLENOID VALVE


Wire series colour

GNYE GREEN / YELLOW

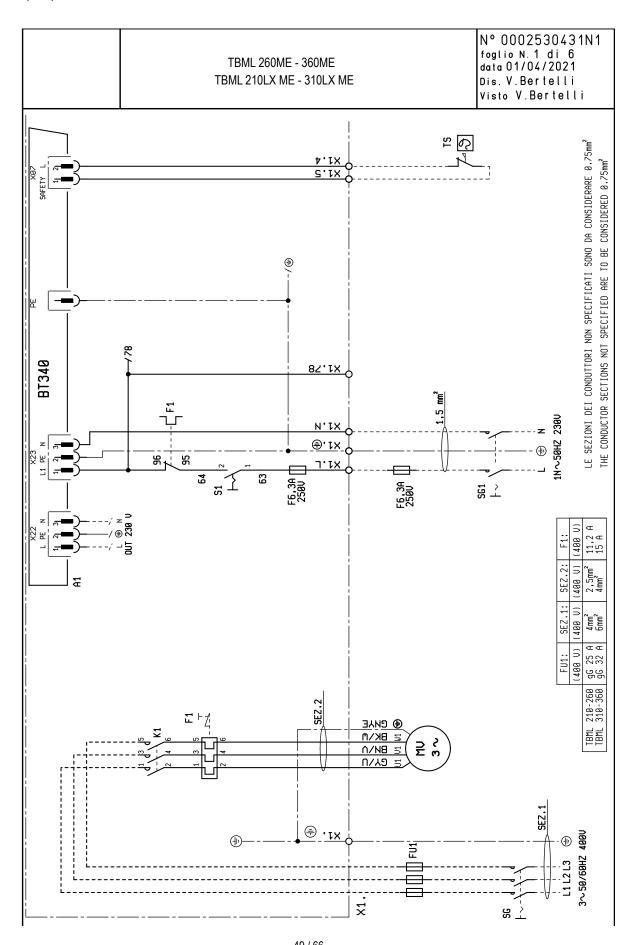
BU BLUE

BN BROWN

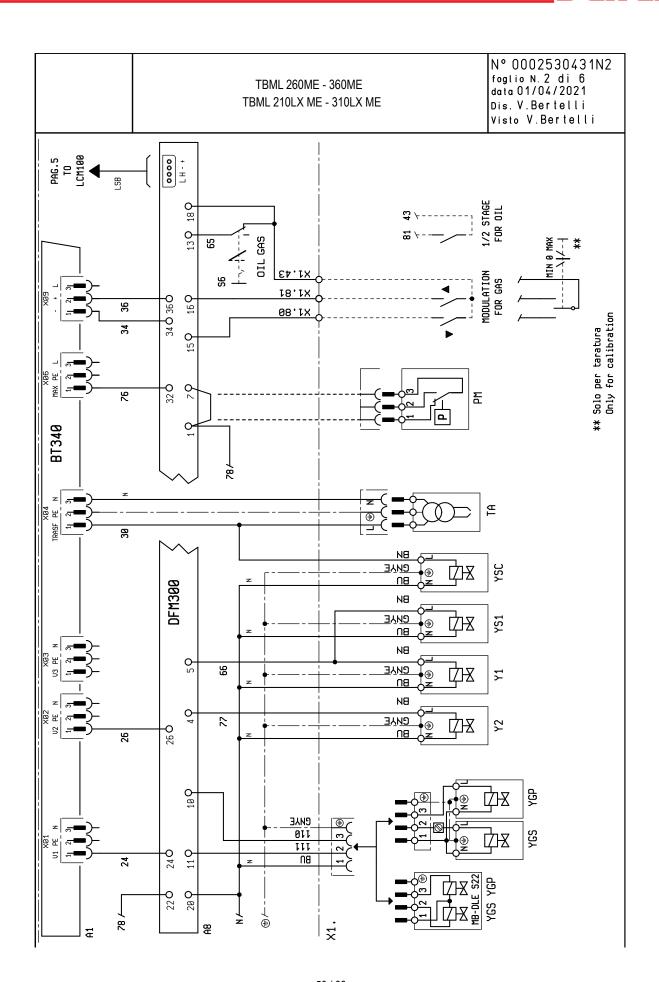
BK BLACK

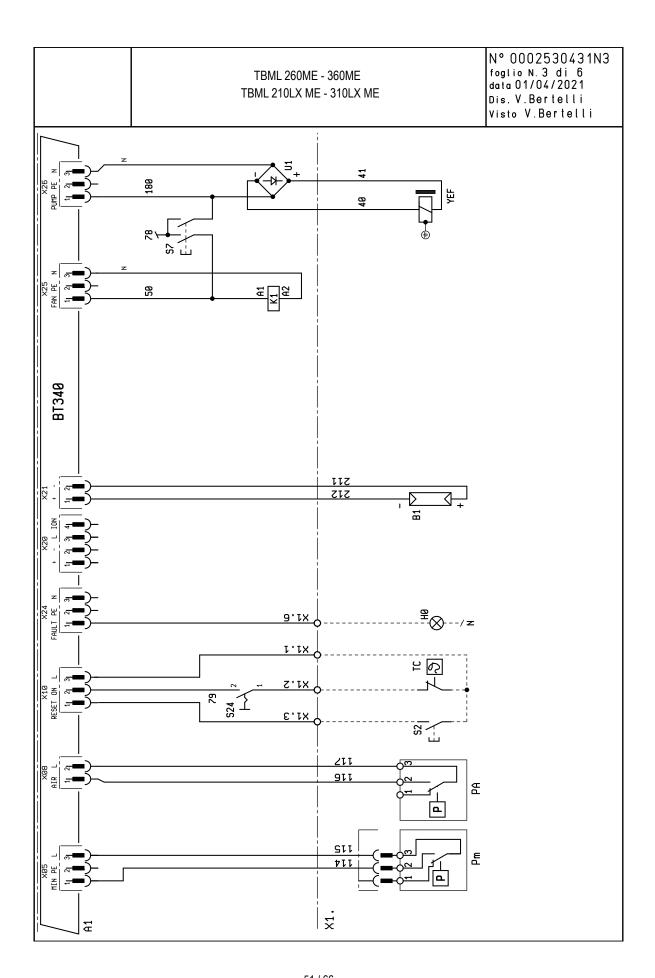
L1 - L2- L3 Phases

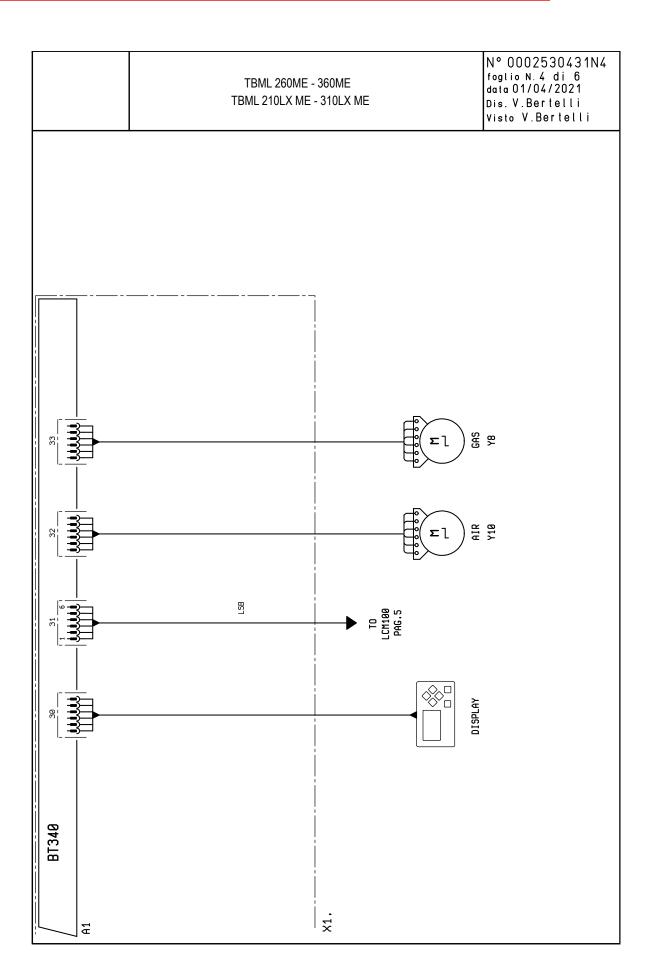
N - Neutral

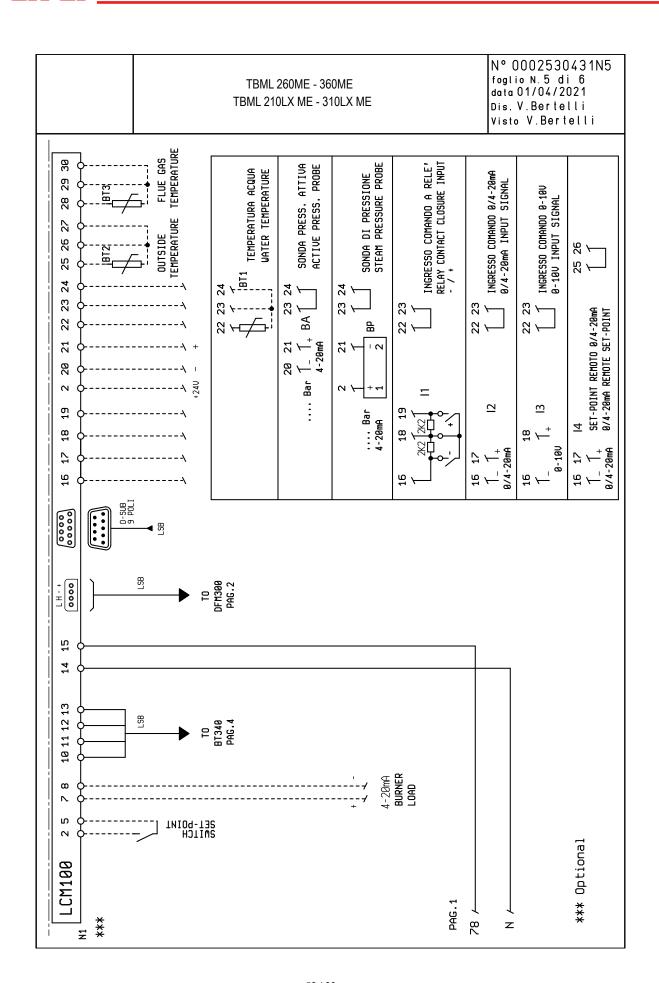


Ground


Minimum flame detection current 100 µA


TBML 210, 310,





A8 DUAL FUEL EQUIPMENT

B1 Flame sensor

BA ACTIVE PROBE

BT1 WATER TEMPERATURE PROBE

BP PRESSURE PROBE

F1 THERMAL RELAY

FU1÷4 FUSES

H0 EXTERNAL LOCK INDICATOR LIGHT/ AUXILIARY HEATING

ELEMENT OPERATION LAMP

I1 RELAY-CONTROLLED INLET

12 0/4 - 20 mA CONTROL INLET

13 0 - 10V CONTROL INLET

14 0/4 - 20 mA REMOTE SETPOINT

K1 FAN MOTOR CONTACTOR

MV FAN MOTOR

N1 "ELECTRONIC REGULATOR

PA AIR PRESSURE SWITCH

P M "MAXIMUM PRESSURE SWITCH"

Pm MINIMUM PRESSURE SWITCH

S1 START/STOP SWITCH

S2 RELEASE BUTTON

S6 FUEL SWITCH

S7 TANK /SYSTEM FILLING BUTTON

S24 SWITCH ON/OFF

SG1/2 MAIN DISCONNECTING SWITCH

TA IGNITION TRANSFORMER

TC BOILER THERMOSTAT

TS SAFETY THERMOSTAT

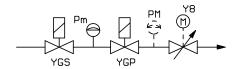
U1 BRIDGE RECTIFIER

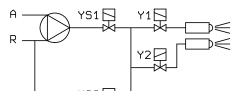
X1 BURNER TERMINAL BOARD

Y1/Y2 1st / 2nd STAGE SOLENOID VALVES

Y8 GAS SERVOMOTOR

Y10 AIR SERVOMOTOR


YEF ELECTRIC-CLUTCH


YGP MAIN GAS SOLENOID VALVE

YGS SAFETY GAS SOLENOID VALVE

YS/YS1... SAFETY SOLENOID VALVE

GAS TRAIN

SPRAY NOZZLE UNIT

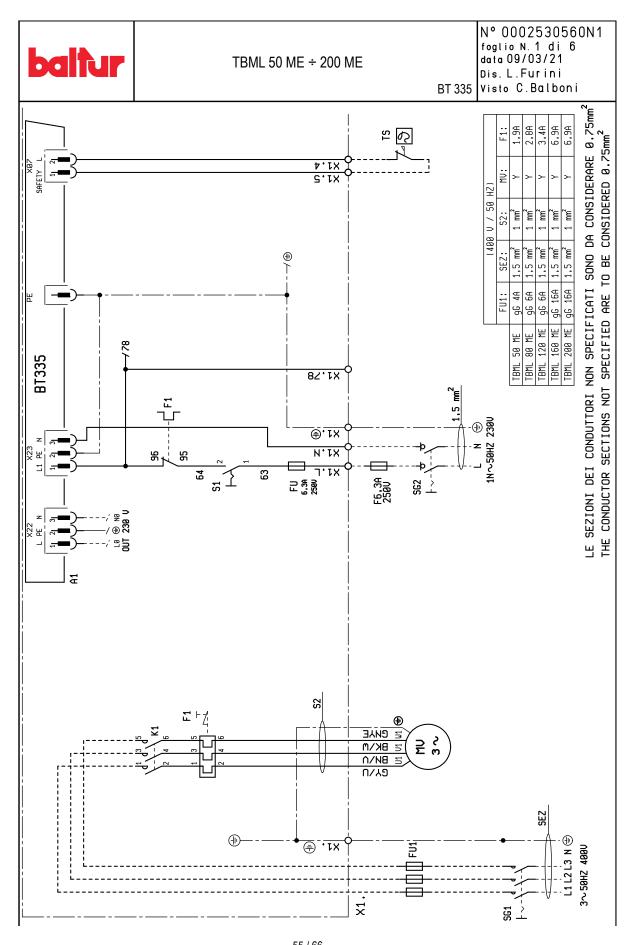
L1 - L2- L3 Phases

N - Neutral

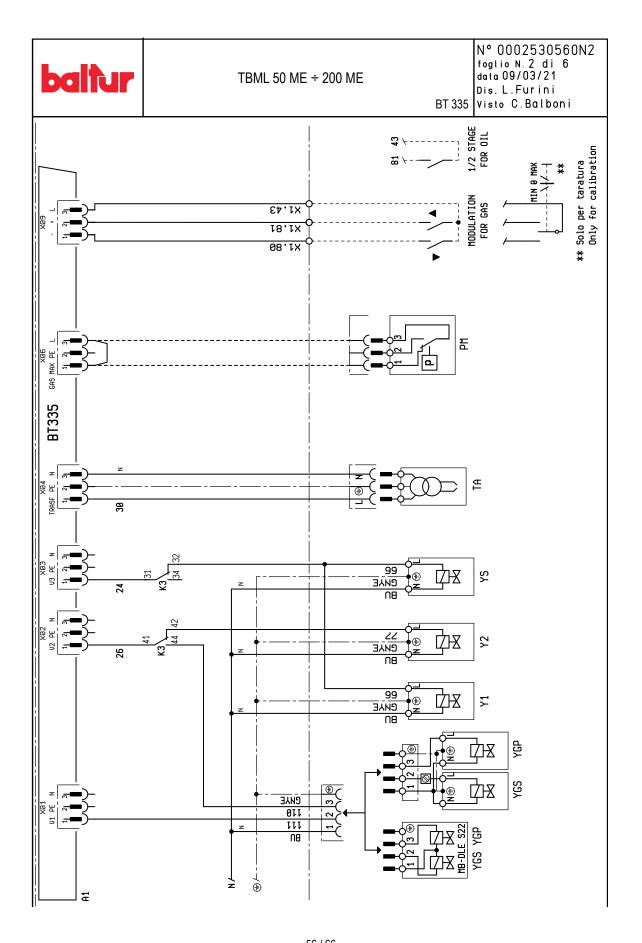
Ground

Wire series colour

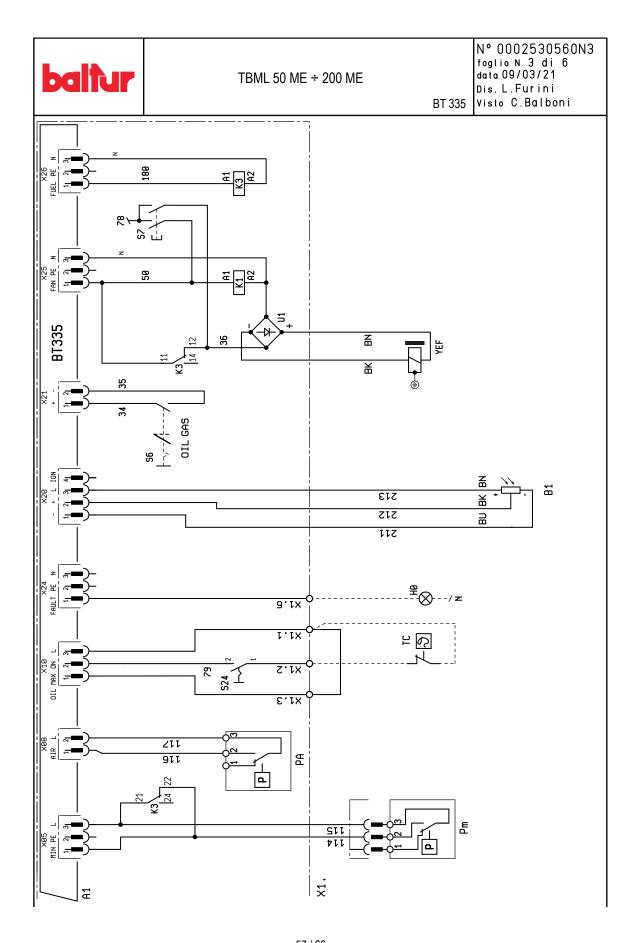
GNYE GREEN / YELLOW

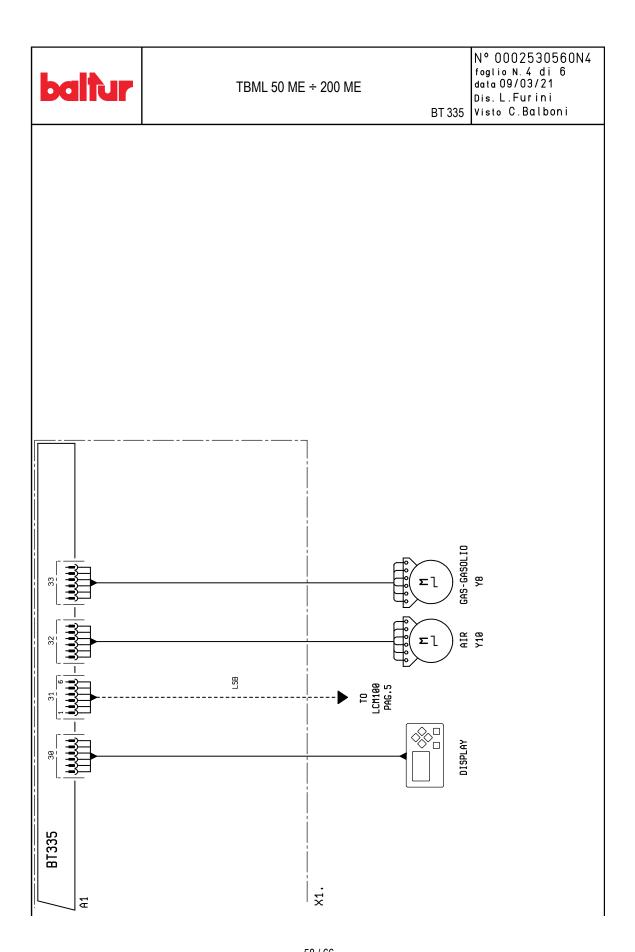

BU BLUE

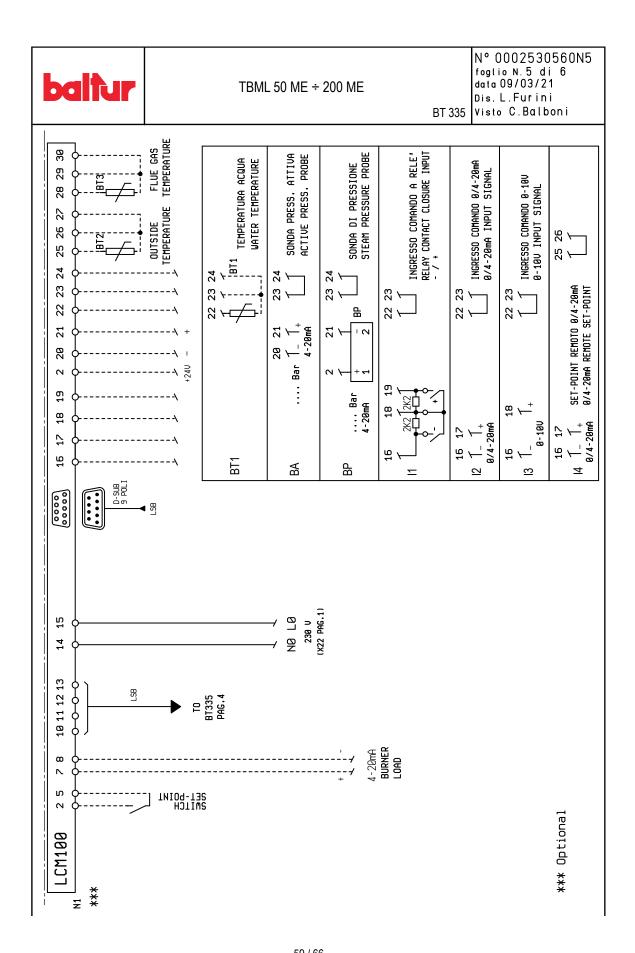
BN BROWN


BK BLACK

BK* BLACK CONNECTOR WITH OVERPRINT







B1 Flame sensor

BT1 WATER TEMPERATURE PROBE

BT2 EXTERNAL TEMPERATURE PROBE

BA ACTIVE PROBE F1 THERMAL RELAY

FU1÷4 FUSES

H0 EXTERNAL LOCK INDICATOR LIGHT/ AUXILIARY HEATING

ELEMENT OPERATION LAMP

I1 RELAY-CONTROLLED INLET

12 0/4 - 20 mA CONTROL INLET

13 0 - 10V CONTROL INLET

14 0/4 - 20 mA REMOTE SETPOINT

15 EXTERNAL REGULATOR COMMAND INPUT

K1 FAN MOTOR CONTACTOR

K3 "CYCLIC MOTOR AUXILIARY RELAY"

MV FAN MOTOR

N1 "ELECTRONIC REGULATOR

PA AIR PRESSURE SWITCH

Pm MINIMUM PRESSURE SWITCH

PM MAXIMUM PRESSURE SWITCH

S1 START/STOP SWITCH

S6 FUEL SWITCH

S7 TANK /SYSTEM FILLING BUTTON

S24 SWITCH ON/OFF

SG1/2 MAIN DISCONNECTING SWITCH

TA IGNITION TRANSFORMER

TC BOILER THERMOSTAT

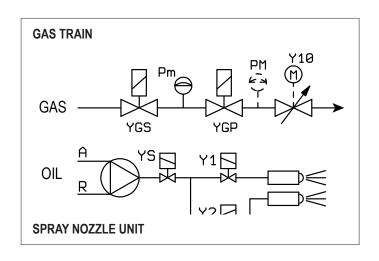
TS SAFETY THERMOSTAT

U1 BRIDGE RECTIFIER

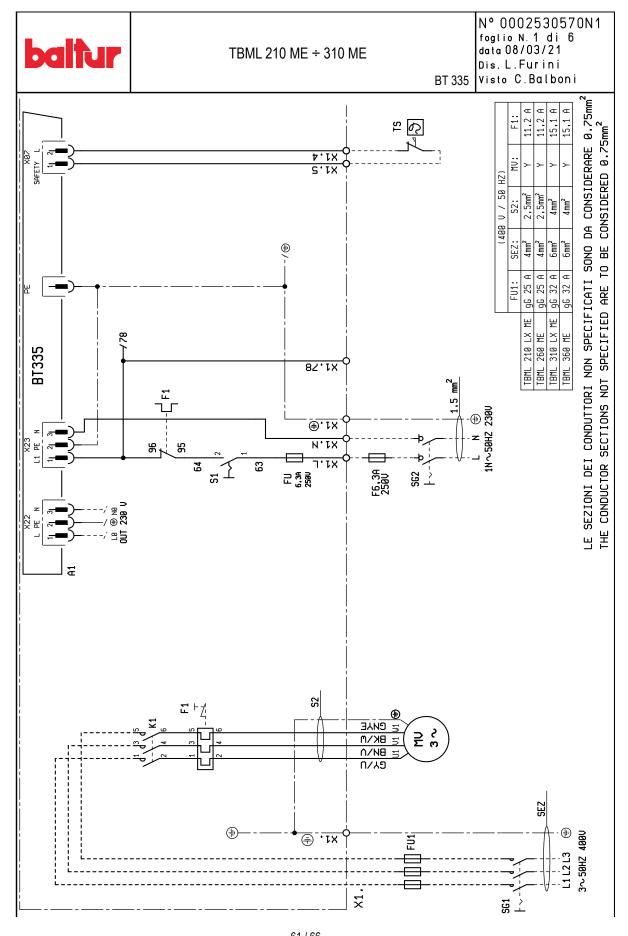
X1 BURNER TERMINAL BOARD

Y1/Y2 1st / 2nd STAGE SOLENOID VALVES

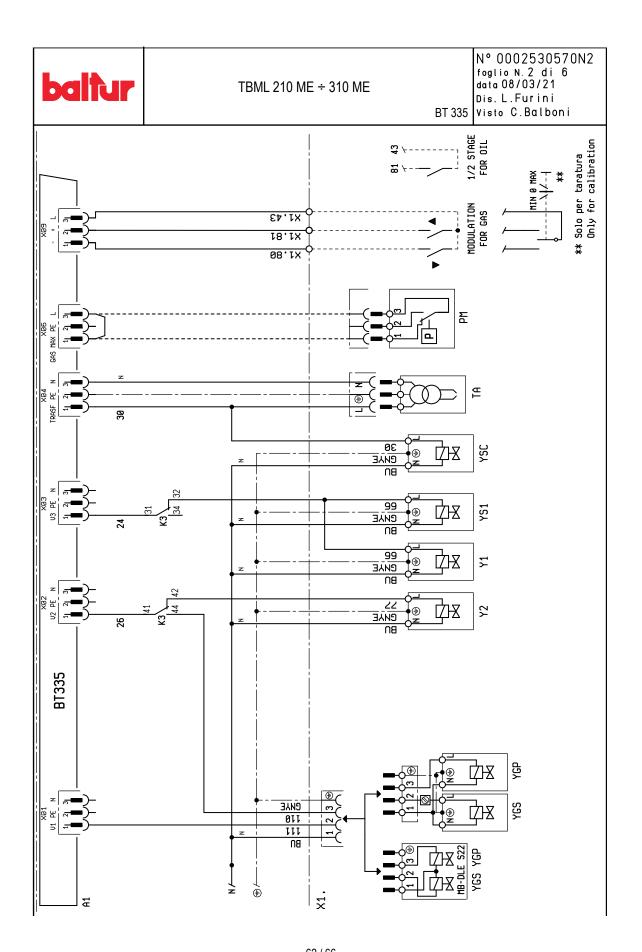
Y8 GAS SERVOMOTOR

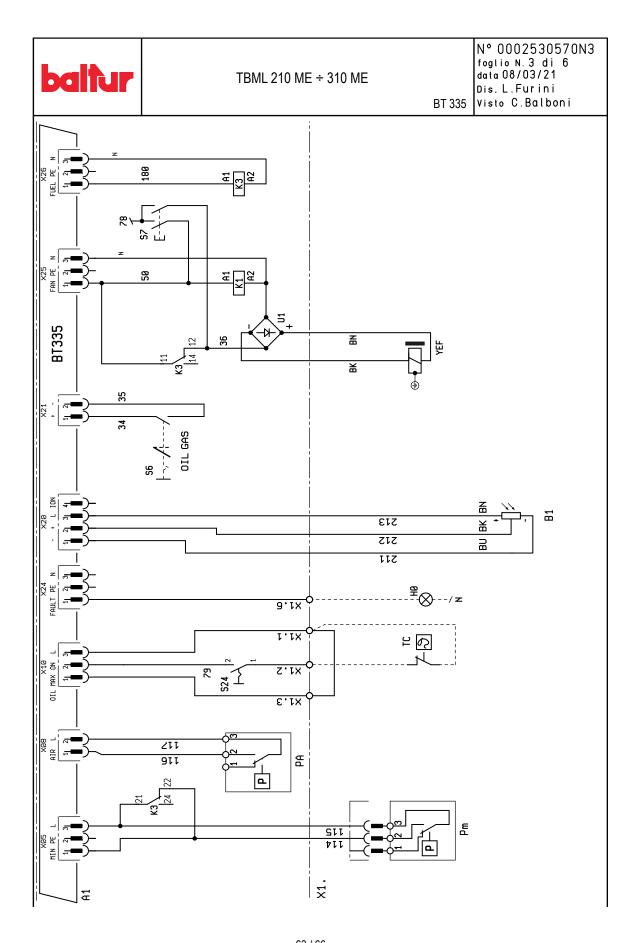

Y10 AIR SERVOMOTOR

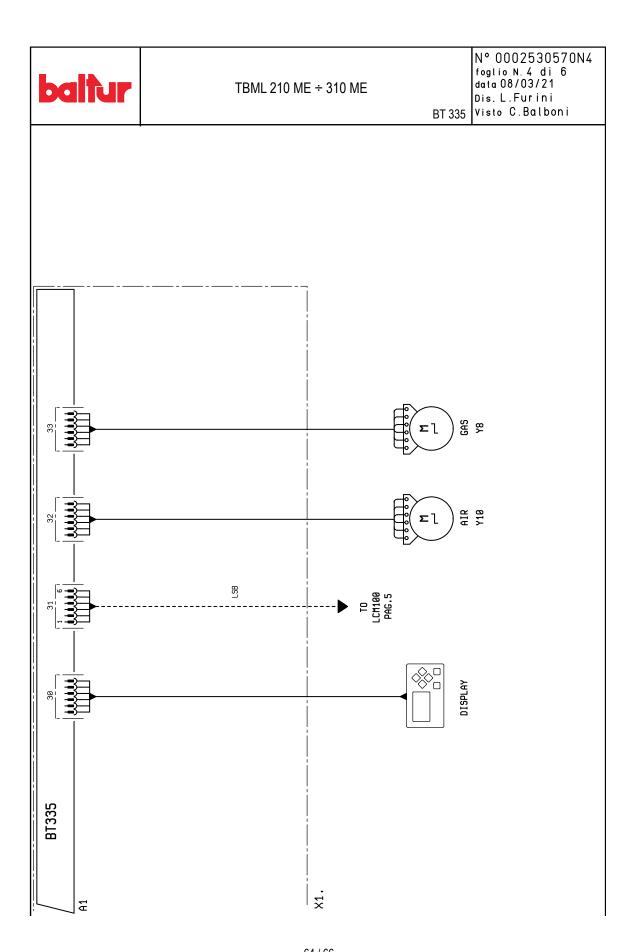
YEF ELECTRIC-CLUTCH

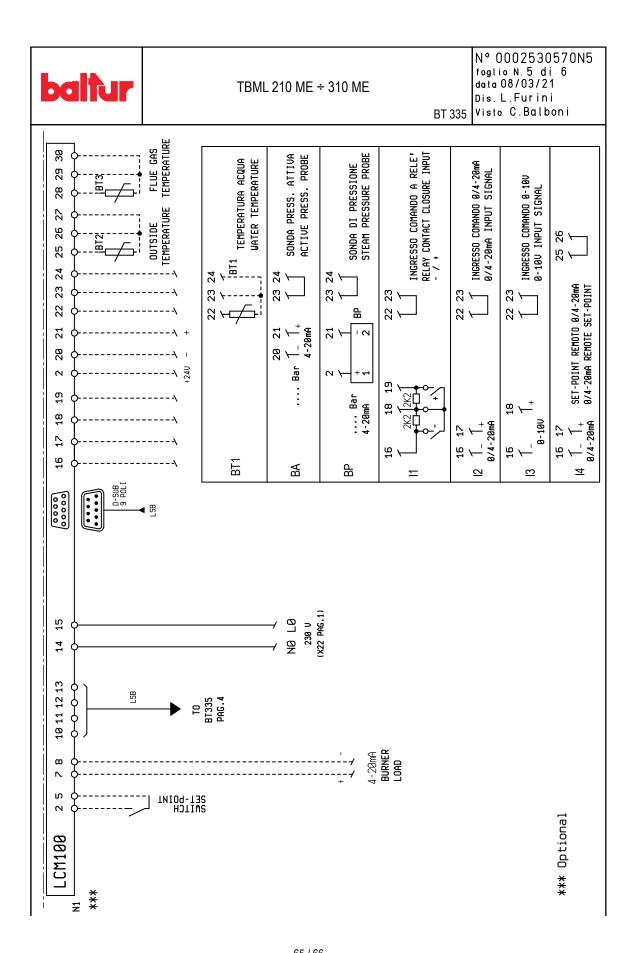

YGP MAIN GAS SOLENOID VALVE

YGS SAFETY GAS SOLENOID VALVE


YS/YS1... SAFETY SOLENOID VALVE







B1 Flame sensor

BT1 WATER TEMPERATURE PROBE

BT2 EXTERNAL TEMPERATURE PROBE

BA ACTIVE PROBE F1 THERMAL RELAY

FU1÷4 FUSES

HO EXTERNAL LOCK INDICATOR LIGHT/ AUXILIARY HEATING

ELEMENT OPERATION LAMP

I1 RELAY-CONTROLLED INLET

12 0/4 - 20 mA CONTROL INLET

I3 0 - 10V CONTROL INLET

14 0/4 - 20 mA REMOTE SETPOINT

15 EXTERNAL REGULATOR COMMAND INPUT

K1 FAN MOTOR CONTACTOR

K3 "CYCLIC MOTOR AUXILIARY RELAY"

MV FAN MOTOR

N1 "ELECTRONIC REGULATOR

PA AIR PRESSURE SWITCH

Pm MINIMUM PRESSURE SWITCH

PM MAXIMUM PRESSURE SWITCH

S1 START/STOP SWITCH

S2 RELEASE BUTTON

S6 FUEL SWITCH

S7 TANK /SYSTEM FILLING BUTTON

S24 SWITCH ON/OFF

SG1/2 MAIN DISCONNECTING SWITCH

TA IGNITION TRANSFORMER

TC BOILER THERMOSTAT

TS SAFETY THERMOSTAT

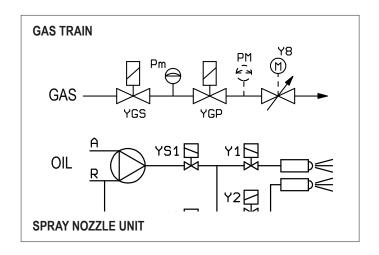
U1 BRIDGE RECTIFIER

X1 BURNER TERMINAL BOARD

Y1/Y2 1st / 2nd STAGE SOLENOID VALVES

Y8 GAS SERVOMOTOR

Y10 AIR SERVOMOTOR


YEF ELECTRIC-CLUTCH

YGP MAIN GAS SOLENOID VALVE

YGS SAFETY GAS SOLENOID VALVE

YS/YS1... SAFETY SOLENOID VALVE

YSC DRAIN SOLENOID VALVE

BALTUR S.P.A. Via Ferrarese, 10 44042 Cento (Fe) - Italy Tel. +39 051-6843711 Fax. +39 051-6857527/28 www.baltur.it info@baltur.it

Il presente catalogo riveste carattere puramente indicativo. La casa, pertanto, si riserva ogni possibilità di modifica dei dati tecnici e di quant'altro in esso riportato. Information contained in this catalogue is not binding. The manufacturer reserves the right to change the technical data and any other data it contains.